Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Proteome Res ; 23(6): 2112-2123, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38690632

RESUMEN

Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways.


Asunto(s)
Migración Animal , Ritmo Circadiano , Copépodos , Proteómica , Copépodos/fisiología , Animales , Ritmo Circadiano/fisiología , Migración Animal/fisiología , Proteómica/métodos , Proteoma/metabolismo , Proteoma/análisis , Oscuridad
2.
Mol Ecol ; 33(6): e17284, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258354

RESUMEN

Zooplankton undergo a diel vertical migration (DVM) which exposes them to gradients of light, temperature, oxygen, and food availability on a predictable daily schedule. Disentangling the co-varying and potentially synergistic interactions on metabolic rates has proven difficult, despite the importance of this migration for the delivery of metabolic waste products to the distinctly different daytime (deep) and nighttime (surface) habitats. This study examines the transcriptomic and proteomic profiles of the circumglobal migratory copepod, Pleuromamma xiphias, over the diel cycle. The transcriptome showed that 96% of differentially expressed genes were upregulated during the middle of the day - the period often considered to be of lowest zooplankton activity. The changes in protein abundance were more spread out over time, peaking (42% of comparisons) in the early evening. Between 9:00 and 15:00, both the transcriptome and proteome datasets showed increased expression related to chitin synthesis and degradation. Additionally, at 09:00 and 22:00, there were increases in myosin and vitellogenin proteins, potentially linked to the stress of migration and/or reproductive investment. Based on protein abundances detected, there is an inferred switch in broad metabolic processes, shifting from electron transport system in the day to glycolysis and glycogen mobilization in the afternoon/evening. These observations provide evidence of the diel impact of DVM on transcriptomic and proteomic pathways that likely influence metabolic processes and subsequent excretion products, and clarify how this behaviour results in the direct rapid transport of waste metabolites from the surface to the deep ocean.


Asunto(s)
Copépodos , Transcriptoma , Animales , Transcriptoma/genética , Proteoma/genética , Copépodos/genética , Proteómica , Perfilación de la Expresión Génica , Zooplancton
3.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717860

RESUMEN

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Asunto(s)
Oxígeno , Oxígeno/metabolismo , Consumo de Oxígeno , Animales , Plancton/metabolismo , Copépodos/metabolismo
4.
Global Biogeochem Cycles ; 37(1): e2022GB007523, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37034114

RESUMEN

Periodic blooms of salps (pelagic tunicates) can result in high export of organic matter, leading to an "outsized" role in the ocean's biological carbon pump (BCP). However, due to their episodic and patchy nature, salp blooms often go undetected and are rarely included in measurements or models of the BCP. We quantified salp-mediated export processes in the northeast subarctic Pacific Ocean in summer of 2018 during a bloom of Salpa aspera. Salps migrated from 300 to 750 m during the day into the upper 100 m at night. Salp fecal pellet production comprised up to 82% of the particulate organic carbon (POC) produced as fecal pellets by the entire epipelagic zooplankton community. Rapid sinking velocities of salp pellets (400-1,200 m d-1) and low microbial respiration rates on pellets (<1% of pellet C respired day-1) led to high salp pellet POC export from the euphotic zone-up to 48% of total sinking POC across the 100 m depth horizon. Salp active transport of carbon by diel vertical migration and carbon export from sinking salp carcasses was usually <10% of the total sinking POC flux. Salp-mediated export markedly increased BCP efficiency, increasing by 1.5-fold the proportion of net primary production exported as POC across the base of the euphotic zone and by 2.6-fold the proportion of this POC flux persisting 100 m below the euphotic zone. Salps have unique and important effects on ocean biogeochemistry and, especially in low flux settings, can dramatically increase BCP efficiency and thus carbon sequestration.

5.
Proc Natl Acad Sci U S A ; 117(41): 25609-25617, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32973093

RESUMEN

Pteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth's carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between "sea butterflies" (Thecosomata; mucus-web feeders) and "sea angels" (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene-Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth's carbon cycle over evolutionary timescales.


Asunto(s)
Evolución Biológica , Ciclo del Carbono/fisiología , Cambio Climático , Gastrópodos , Plancton , Animales , Calcificación Fisiológica/fisiología , Fósiles , Gastrópodos/clasificación , Gastrópodos/genética , Gastrópodos/fisiología , Concentración de Iones de Hidrógeno , Filogenia , Plancton/clasificación , Plancton/genética , Plancton/fisiología
6.
J Exp Biol ; 223(Pt 15)2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32587067

RESUMEN

The clap-and-fling mechanism is a well-studied, unsteady lift generation mechanism widely used by flying insects and is considered obligatory for tiny insects flying at low to intermediate Reynolds numbers, Re However, some aquatic zooplankters including some pteropod (i.e. sea butterfly) and heteropod species swimming at low to intermediate Re also use the clap-and-fling mechanism. These marine snails have extremely flexible, actively deformed, muscular wings which they flap reciprocally to create propulsive force, and these wings may enable novel lift generation mechanisms not available to insects, which have less flexible, passively deformed wings. Using high-speed stereophotogrammetry and micro-particle image velocimetry, we describe a novel cylindrical overlap-and-fling mechanism used by the pteropod species Cuvierina atlantica In this maneuver, the pteropod's wingtips overlap at the end of each half-stroke to sequentially form a downward-opening cone, a cylinder and an upward-opening cone. The transition from downward-opening cone to cylinder produces a downward-directed jet at the trailing edges. Similarly, the transition from cylinder to upward-opening cone produces downward flow into the gap between the wings, a leading edge vortex ring and a corresponding sharp increase in swimming speed. The ability of this pteropod species to perform the cylindrical overlap-and-fling maneuver twice during each stroke is enabled by its slender body and highly flexible wings. The cylindrical overlap-and-fling mechanism observed here may inspire the design of new soft robotic aquatic vehicles incorporating highly flexible propulsors to take advantage of this novel lift generation technique.


Asunto(s)
Mariposas Diurnas , Vuelo Animal , Animales , Fenómenos Biomecánicos , Insectos , Modelos Biológicos , Alas de Animales
7.
J Exp Biol ; 221(Pt 23)2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30348646

RESUMEN

Atlantiid heteropods are zooplanktonic marine snails which have a calcium carbonate shell and single swimming fin. They actively swim to hunt prey and vertically migrate. Previous accounts of atlantiid heteropod swimming described these animals sculling with the swimming fin while the shell passively hung beneath the body. Here, we show, via high-speed stereophotogrammetric measurements of body, fin and shell kinematics, that the atlantiid heteropod Atlanta selvagensis actively flaps both the swimming fin and shell in a highly coordinated wing-like manner in order to swim in the intermediate Reynolds number regime (Re=10-100). The fin and shell kinematics indicate that atlantiid heteropods use unsteady hydrodynamic mechanisms such as clap-and-fling and delayed stall. Unique features of atlantiid heteropod swimming include the coordinated pairing of dissimilar appendages, use of the clap and fling mechanism twice during each stroke cycle, and the fin's extremely large stroke amplitude, which exceeds 180 deg.


Asunto(s)
Aletas de Animales/fisiología , Exoesqueleto , Gastrópodos/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos , Grabación en Video/métodos , Zooplancton
8.
J Exp Biol ; 221(Pt 3)2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29191863

RESUMEN

Thecosomatous pteropods, a group of aragonite shell-bearing zooplankton, are becoming an important sentinel organism for understanding the influence of ocean acidification on pelagic organisms. These animals show vulnerability to changing carbonate chemistry conditions, are geographically widespread, and are both biogeochemically and trophically important. The objective of this study was to determine how increasing duration and severity of CO2 treatment influence the physiology of the thecosome Limacina retroversa, integrating both gene expression and organism-level (respiration and calcification) metrics. We exposed pteropods to over-saturated, near-saturated or under-saturated conditions and sampled individuals at 1, 3, 7, 14 and 21 days of exposure to test for the effect of duration. We found that calcification was affected by borderline and under-saturated conditions by week two, while respiration appeared to be more strongly influenced by an interaction between severity and duration of exposure, showing complex changes by one week of exposure. The organismal metrics were corroborated by specific gene expression responses, with increased expression of biomineralization-associated genes in the medium and high treatments throughout and complex changes in metabolic genes corresponding to both captivity and CO2 treatment. Genes associated with other physiological processes such as lipid metabolism, neural function and ion pumping had complex responses, influenced by both duration and severity. Beyond these responses, our findings detail the captivity effects for these pelagic organisms, providing information to contextualize the conclusions of previous studies, and emphasizing a need for better culturing protocols.


Asunto(s)
Calcificación Fisiológica , Dióxido de Carbono/metabolismo , Gastrópodos/fisiología , Transcriptoma , Animales , Cambio Climático , Gastrópodos/genética , Respiración , Factores de Tiempo
9.
Conserv Physiol ; 12(1): coae040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915852

RESUMEN

The passive dissolution of anthropogenically produced CO2 into the ocean system is reducing ocean pH and changing a suite of chemical equilibria, with negative consequences for some marine organisms, in particular those that bear calcium carbonate shells. Although our monitoring of these chemical changes has improved, we have not developed effective tools to translate observations, which are typically of the pH and carbonate saturation state, into ecologically relevant predictions of biological risks. One potential solution is to develop bioindicators: biological variables with a clear relationship to environmental risk factors that can be used for assessment and management. Thecosomatous pteropods are a group of pelagic shelled marine gastropods, whose biological responses to CO2 have been suggested as potential bioindicators of ocean acidification owing to their sensitivity to acidification in both the laboratory and the natural environment. Using five CO2 exposure experiments, occurring across four seasons and running for up to 15 days, we describe a consistent relationship between saturation state, shell transparency and duration of exposure, as well as identify a suite of genes that could be used for biological monitoring with further study. We clarify variations in thecosome responses due to seasonality, resolving prior uncertainties and demonstrating the range of their phenotypic plasticity. These biomarkers of acidification stress can be implemented into ecosystem models and monitoring programmes in regions where pteropods are found, whilst the approach will serve as an example for other regions on how to bridge the gap between point-based chemical monitoring and biologically relevant assessments of ecosystem health.

10.
FEMS Microbes ; 4: xtac029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333435

RESUMEN

As the oligotrophic gyres expand due to global warming, exacerbating resource limitation impacts on primary producers, predicting changes to microbial assemblages and productivity requires knowledge of the community response to nutrient availability. This study examines how organic and inorganic nutrients influence the taxonomic and trophic composition (18S metabarcoding) of small eukaryotic plankton communities (< 200 µm) within the euphotic zone of the oligotrophic Sargasso Sea. The study was conducted by means of field sampling of natural microbial communities and laboratory incubation of these communities under different nutrient regimes. Dissimilarity in community composition increased along a depth gradient, with a homogeneous protist community within the mixed layer and distinct microbial assemblages at different depths below the deep chlorophyll maximum. A nutrient enrichment assay revealed the potential of natural microbial communities to rapidly shift in composition in response to nutrient addition. Results highlighted the importance of inorganic phosphorus availability, largely understudied compared to nitrogen, in constraining microbial diversity. Dissolved organic matter addition led to a loss of diversity, benefiting a limited number of phagotrophic and mixotrophic taxa. Nutrient history of the community sets the physiological responsiveness of the eukaryotic community to changing nutrient regimes and needs to be considered in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA