Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299350

RESUMEN

A detailed study of the different structural transitions of the triblock copolymer PEO27-PPO61-PEO27 (P104) in water, in the dilute and semi-dilute regions, is addressed here as a function of temperature and P104 concentration (CP104) by mean of complimentary methods: viscosimetry, densimetry, dynamic light scattering, turbidimetry, polarized microscopy, and rheometry. The hydration profile was calculated through density and sound velocity measurements. It was possible to identify the regions where monomers exist, spherical micelle formation, elongated cylindrical micelles formation, clouding points, and liquid crystalline behavior. We report a partial phase diagram including information for P104 concentrations from 1 × 10-4 to 90 wt.% and temperatures from 20 to 75 °C that will be helpful for further interaction studies with hydrophobic molecules or active principles for drug delivery.

2.
Polymers (Basel) ; 15(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37765647

RESUMEN

In this work, cellulose nanocrystals (CNCs), bleached cellulose nanofibers (bCNFs), and unbleached cellulose nanofibers (ubCNFs) isolated by acid hydrolysis from Agave tequilana Weber var. Azul bagasse, an agro-waste from the tequila industry, were used as reinforcements in a thermoplastic starch matrix to obtain environmentally friendly materials that can substitute contaminant polymers. A robust characterization of starting materials and biocomposites was carried out. Biocomposite mechanical, thermal, and antibacterial properties were evaluated, as well as color, crystallinity, morphology, rugosity, lateral texture, electrical conductivity, chemical identity, solubility, and water vapor permeability. Pulp fibers and nanocelluloses were analyzed via SEM, TEM, and AFM. The water vapor permeability (WVP) decreased by up to 20.69% with the presence of CNCs. The solubility decreases with the presence of CNFs and CNCs. The addition of CNCs and CNFs increased the tensile strength and Young's modulus and decreased the elongation at break. Biocomposites prepared with ubCNF showed the best tensile mechanical properties due to a better adhesion with the matrix. Images of bCNF-based biocomposites demonstrated that bCNFs are good reinforcing agents as the fibers were dispersed within the starch film and embedded within the matrix. Roughness increased with CNF content and decreased with CNC content. Films with CNCs did not show bacterial growth for Staphylococcus aureus and Escherichia coli. This study offers a new theoretical basis since it demonstrates that different proportions of bleached or unbleached nanofibers and nanocrystals can improve the properties of starch films.

3.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670733

RESUMEN

A multilevel factorial design of 23 with 12 experiments was developed for the preparation of cellulose nanocrystals (CNC) from Agave tequilana Weber var. Azul bagasse, an agro-industrial waste from tequila production. The studied parameters were acid type (H2SO4 and HCl), acid concentration (60 and 65 wt% for H2SO4, 2 and 8N for HCl) temperature (40 and 60 °C for H2SO4, 50 and 90 °C for HCl), and hydrolysis time (40, 55 and 70 min for H2SO4; and 30, 115 and 200 min for HCl). The obtained CNC were physical and chemically characterized using dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XDR) techniques. The maximum CNC yield was 90 and 96% for HCL and H2SO4, respectively, and the crystallinity values ranged from 88-91%. The size and morphology of A. tequilana CNC strongly depends on the acid type and hydrolysis time. The shortest CNC obtained with H2SO4 (65 wt%, 40 °C, and 70 min) had a length of 137 ± 68 nm, width 33 ± 7 nm, and height 9.1 nm, whereas the shortest CNC obtained with HCl (2 N, 50 °C and 30 min) had a length of 216 ± 73 nm, width 69 ± 17 nm, and height 8.9 nm. In general, the obtained CNC had an ellipsoidal shape, whereas CNC prepared from H2SO4 were shorter and thinner than those obtained with HCl. The total sulfate group content of CNC obtained with H2SO4 increased with time, temperature, and acid concentration, exhibiting an exponential behavior of CSG=aebt.

4.
ACS Omega ; 5(28): 17347-17355, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32715219

RESUMEN

The interactions of proteins and other molecules and their adsorption onto substrates is a fascinating topic that has been applied to surface technologies, biosensors, corrosion studies, biotechnologies, and other fields. The success of these applications requires a previous characterization using some analytical techniques that, ordinarily, are not electrochemical. This work proposes analyzing the variation of the double-layer capacitance obtained through impedance electrochemical spectroscopy as an alternative strategy to show evidence of the interactions between proteins and triblock copolymers. The proposal is supported through the study of the interaction and adsorption of bovine serum albumin (BSA) and a commercial triblock copolymer (P103) in phosphate buffer on a gold electrode. The double-layer capacitance and the apparent interface thickness vs polarization potential curves as well as the potential of zero charge for pure P103 (0.6 wt %, corresponding to 6 g L-1), pure BSA (3 mg mL-1), and P103-BSA solutions (0.6 wt % and 3 mg mL-1, respectively) are sensitive enough to show not only the interaction and the adsorption of the species but also the polarization potential where these interactions are taking place. A qualitative and quantitative analysis concerning the double-layer capacitance behavior is given. The significance and impact of this work is also presented.

5.
Carbohydr Polym ; 201: 471-481, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241843

RESUMEN

A novel thermosensitive hydrogel consisting of phosphorylated ß-cyclodextrin (ßCD-PH), ß-cyclodextrin (ßCD) and chitosan was prepared by embedding ßCD and ßCD-PH, into the well-studied chitosan/αß-glycerophosphate system (CS/αßGP). The relevance of this work is the use of ßCD-PH to partially substitute αßGP as the gelling agent. The role of ßCD and ßCD-PH on the rheological properties of hydrogels, gelation time, and gelation temperature were investigated. The gelation time for all the samples (CS/αßGP, CS/αßGP/ßCD, and CS/αßGP/ßCD-PH) was less than a minute at 37 °C, which is suitable for biomedical applications. The gelation temperature for hydrogel CS/αßGP/ßCD-PH increased linearly with the addition of ßCD-PH within the interval 31.8-37.3 °C, at ratios CS:ßCD-PH of 1:0.5, 1:1, 1:1.5 and 1:2 (w/w). The hydrogel thus obtained has potential applications in dual drug delivery (hydrophilic and hydrophobic).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA