Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Neurosci ; 35(45): 15157-69, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558786

RESUMEN

In Alzheimer's disease, accumulation of soluble oligomers of ß-amyloid peptide is known to be highly toxic, causing disturbances in synaptic activity and neuronal death. Multiple studies relate these effects to increased oxidative stress and aberrant activity of calcium-permeable cation channels leading to calcium imbalance. The transient receptor potential melastatin 2 (TRPM2) channel, a Ca(2+)-permeable nonselective cation channel activated by oxidative stress, has been implicated in neurodegenerative diseases, and more recently in amyloid-induced toxicity. Here we show that the function of TRPM2 is augmented by treatment of cultured neurons with ß-amyloid oligomers. Aged APP/PS1 Alzheimer's mouse model showed increased levels of endoplasmic reticulum stress markers, protein disulfide isomerase and phosphorylated eukaryotic initiation factor 2α, as well as decreased levels of the presynaptic marker synaptophysin. Elimination of TRPM2 in APP/PS1 mice corrected these abnormal responses without affecting plaque burden. These effects of TRPM2 seem to be selective for ß-amyloid toxicity, as ER stress responses to thapsigargin or tunicamycin in TRPM2(-/-) neurons was identical to that of wild-type neurons. Moreover, reduced microglial activation was observed in TRPM2(-/-)/APP/PS1 hippocampus compared with APP/PS1 mice. In addition, age-dependent spatial memory deficits in APP/PS1 mice were reversed in TRPM2(-/-)/APP/PS1 mice. These results reveal the importance of TRPM2 for ß-amyloid neuronal toxicity, suggesting that TRPM2 activity could be potentially targeted to improve outcomes in Alzheimer's disease. SIGNIFICANCE STATEMENT: Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress sensing calcium-permeable channel that is thought to contribute to calcium dysregulation associated with neurodegenerative diseases, including Alzheimer's disease. Here we show that oligomeric ß-amyloid, the toxic peptide in Alzheimer's disease, facilitates TRPM2 channel activation. In mice designed to model Alzheimer's disease, genetic elimination of TRPM2 normalized deficits in synaptic markers in aged mice. Moreover, the absence of TRPM2 improved age-dependent spatial memory deficits observed in Alzheimer's mice. Our results reveal the importance of TRPM2 for neuronal toxicity and memory impairments in an Alzheimer's mouse model and suggest that TRPM2 could be targeted for the development of therapeutic agents effective in the treatment of dementia.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Trastornos de la Memoria/metabolismo , Canales Catiónicos TRPM/deficiencia , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides/toxicidad , Animales , Células Cultivadas , Humanos , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Placa Amiloide/metabolismo , Canales Catiónicos TRPM/genética
2.
EMBO J ; 31(4): 805-16, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22187052

RESUMEN

Metaplasticity is a higher form of synaptic plasticity that is essential for learning and memory, but its molecular mechanisms remain poorly understood. Here, we report that metaplasticity of transmission at CA1 synapses in the hippocampus is mediated by Src family kinase regulation of NMDA receptors (NMDARs). We found that stimulation of G-protein-coupled receptors (GPCRs) regulated the absolute contribution of GluN2A-versus GluN2B-containing NMDARs in CA1 neurons: pituitary adenylate cyclase activating peptide 1 receptors (PAC1Rs) selectively recruited Src kinase, phosphorylated GluN2ARs, and enhanced their functional contribution; dopamine 1 receptors (D1Rs) selectively stimulated Fyn kinase, phosphorylated GluN2BRs, and enhanced these currents. Surprisingly, PAC1R lowered the threshold for long-term potentiation while long-term depression was enhanced by D1R. We conclude that metaplasticity is gated by the activity of GPCRs, which selectively target subtypes of NMDARs via Src kinases.


Asunto(s)
Receptores de N-Metil-D-Aspartato/metabolismo , Familia-src Quinasas/metabolismo , Animales , Western Blotting , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Hipocampo/fisiología , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal , Fosforilación , Ratas , Ratas Wistar
3.
Proc Natl Acad Sci U S A ; 109(43): 17651-6, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045697

RESUMEN

Basal forebrain cholinergic neurons, which innervate the hippocampus and cortex, have been implicated in many forms of cognitive function. Immunolesion-based methods in animal models have been widely used to study the role of acetylcholine (ACh) neurotransmission in these processes, with variable results. Cholinergic neurons have been shown to release both glutamate and ACh, making it difficult to deduce the specific contribution of each neurotransmitter on cognition when neurons are eliminated. Understanding the precise roles of ACh in learning and memory is critical because drugs that preserve ACh are used as treatment for cognitive deficits. It is therefore important to define which cholinergic-dependent behaviors could be improved pharmacologically. Here we investigate the contributions of forebrain ACh on hippocampal synaptic plasticity and cognitive behavior by selective elimination of the vesicular ACh transporter, which interferes with synaptic storage and release of ACh. We show that elimination of vesicular ACh transporter in the hippocampus results in deficits in long-term potentiation and causes selective deficits in spatial memory. Moreover, decreased cholinergic tone in the forebrain is linked to hyperactivity, without changes in anxiety or depression-related behavior. These data uncover the specific contribution of forebrain cholinergic tone for synaptic plasticity and behavior. Moreover, these experiments define specific cognitive functions that could be targeted by cholinergic replacement therapy.


Asunto(s)
Conducta Animal , Potenciación a Largo Plazo , Memoria , Prosencéfalo/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Aprendizaje , Ratones , Ratones Noqueados , Plasticidad Neuronal , Reacción en Cadena de la Polimerasa
4.
J Neurosci ; 33(42): 16552-64, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133259

RESUMEN

In Alzheimer's disease (AD), soluble amyloid-ß oligomers (AßOs) trigger neurotoxic signaling, at least partially, via the cellular prion protein (PrP(C)). However, it is unknown whether other ligands of PrP(C) can regulate this potentially toxic interaction. Stress-inducible phosphoprotein 1 (STI1), an Hsp90 cochaperone secreted by astrocytes, binds to PrP(C) in the vicinity of the AßO binding site to protect neurons against toxic stimuli. Here, we investigated a potential role of STI1 in AßO toxicity. We confirmed the specific binding of AßOs and STI1 to the PrP and showed that STI1 efficiently inhibited AßO binding to PrP in vitro (IC50 of ∼70 nm) and also decreased AßO binding to cultured mouse primary hippocampal neurons. Treatment with STI1 prevented AßO-induced synaptic loss and neuronal death in mouse cultured neurons and long-term potentiation inhibition in mouse hippocampal slices. Interestingly, STI1-haploinsufficient neurons were more sensitive to AßO-induced cell death and could be rescued by treatment with recombinant STI1. Noteworthy, both AßO binding to PrP(C) and PrP(C)-dependent AßO toxicity were inhibited by TPR2A, the PrP(C)-interacting domain of STI1. Additionally, PrP(C)-STI1 engagement activated α7 nicotinic acetylcholine receptors, which participated in neuroprotection against AßO-induced toxicity. We found an age-dependent upregulation of cortical STI1 in the APPswe/PS1dE9 mouse model of AD and in the brains of AD-affected individuals, suggesting a compensatory response. Our findings reveal a previously unrecognized role of the PrP(C) ligand STI1 in protecting neurons in AD and suggest a novel pathway that may help to offset AßO-induced toxicity.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas de Choque Térmico/metabolismo , Neuronas/metabolismo , Proteínas PrPC/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Ratones , Unión Proteica , Transducción de Señal/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
5.
Hippocampus ; 24(12): 1601-14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25087967

RESUMEN

Endocannabinoids (eCBs), including AEA and 2-AG, are endogenous signaling mediators involved in many physiological and pathological events. The G protein-coupled cannabinoid receptor 1 (CB1 R) is an important target for eCBs, however, additional non-CB1 receptor targets have also been identified. Although recent evidence suggests that NMDA receptor function may be regulated by eCBs, the underlying mechanisms remain poorly characterized. Using acutely isolated CA1 neurons and slices from the hippocampus, we found that both AEA and 2-AG potentiate NMDAR-mediated currents independently of CB1 receptors (CB1 Rs) and via distinct signaling pathways. Potentiation by AEA requires the activation of TRPV1 channels. In contrast, potentiation by 2-AG requires the sequential activation of PKC and Src. Additionally, in hippocampal slices, we found that both AEA and 2-AG induce NMDAR-mediated metaplasticity and facilitate the induction of subsequent LTD independently of CB1 Rs. Enhanced LTD by AEA, but not 2-AG, was dependent on TRPV1 channels. Our findings reveal previously unrecognized non-CB1 R-dependent signaling cascades through which the two major eCBs regulate NMDA receptor function and consequently synaptic plasticity.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Región CA1 Hipocampal/fisiología , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Alcamidas Poliinsaturadas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo , Técnicas de Cultivo de Tejidos
6.
Int J Mol Sci ; 15(2): 3003-24, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24562329

RESUMEN

G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Central/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Plasticidad Neuronal , Subunidades de Proteína/metabolismo
7.
Anesthesiology ; 118(5): 1065-75, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23485993

RESUMEN

BACKGROUND: Volatile anesthetics act primarily through upregulating the activity of γ-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. METHODS: The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. RESULTS: ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µM. Isoflurane (0.1-250 µM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. CONCLUSIONS: GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.


Asunto(s)
Anestésicos por Inhalación/farmacología , Células Epiteliales/efectos de los fármacos , Isoflurano/farmacología , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Anestésicos por Inhalación/química , Animales , Bicuculina/farmacología , Western Blotting , Colorantes , Ciclooxigenasa 2/biosíntesis , Técnica del Anticuerpo Fluorescente , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Humanos , Isoflurano/química , Ratones , Microscopía Confocal , Muscimol/farmacología , Técnicas de Placa-Clamp , Soluciones , Azul de Tripano
8.
Acta Pharmacol Sin ; 34(11): 1381-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24162508

RESUMEN

The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Optogenética/métodos , Sinapsis/fisiología , Animales , Conducta Animal/fisiología , Encéfalo/fisiología , Humanos , Aprendizaje/fisiología , Memoria/fisiología
9.
Adv Exp Med Biol ; 961: 433-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23224901

RESUMEN

Stroke is a very strong risk factor for dementia. Furthermore, ischemic stroke and Alzheimer's disease (AD) share a number of overlapping mechanisms of neuron loss and dysfunction, including those induced by the inappropriate activation of N-methyl-D-aspartate receptors (NMDARs). These receptors form a major subtype of excitatory glutamate receptor. They are nonselective cation channels with appreciable Ca(2+) permeability, and their overactivation leads to neurotoxicity in the cortex and hippocampus. NMDARs have therefore been therapeutic targets in both conditions, but they have failed in the treatment of stroke, and there is limited rationale for using them in treating AD. In this chapter, we discuss current understanding of subtypes of NMDARs and their potential roles in -ischemic stroke and AD. We also discuss the properties of several other nonselective cation channels, transient receptor potential melastatin 2 and 7 channels, and their implications in linking these conditions.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canales Catiónicos TRPM/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Isquemia Encefálica/patología , Calcio/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Hipocampo/patología , Humanos , Proteínas Serina-Treonina Quinasas , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
10.
J Neurosci ; 30(15): 5269-82, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392949

RESUMEN

Synaptic plasticity, which is the neuronal substrate for many forms of hippocampus-dependent learning, is attenuated by GABA type A receptor (GABA(A)R)-mediated inhibition. The prevailing notion is that a synaptic or phasic form of GABAergic inhibition regulates synaptic plasticity; however, little is known about the role of GABA(A)R subtypes that generate a tonic or persistent inhibitory conductance. We studied the regulation of synaptic plasticity by alpha5 subunit-containing GABA(A)Rs (alpha5GABA(A)Rs), which generate a tonic inhibitory conductance in CA1 pyramidal neurons using electrophysiological recordings of field and whole-cell potentials in hippocampal slices from both wild-type and null mutant mice for the alpha5 subunit of the GABA(A)R (Gabra5(-/-) mice). In addition, the strength of fear-associated memory was studied. The results showed that alpha5GABA(A)R activity raises the threshold for induction of long-term potentiation in a highly specific band of stimulation frequencies (10-20 Hz) through mechanisms that are predominantly independent of inhibitory synaptic transmission. The deletion or pharmacological inhibition of alpha5GABA(A)Rs caused no change in baseline membrane potential or input resistance but increased depolarization during 10 Hz stimulation. The encoding of hippocampus-dependent memory was regulated by alpha5GABA(A)Rs but only under specific conditions that generate moderate but not robust forms of fear-associated learning. Thus, under specific conditions, alpha5GABA(A)R activity predominates over synaptic inhibition in modifying the strength of both synaptic plasticity in vitro and certain forms of memory in vivo.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Receptores de GABA-A/metabolismo , Animales , Aprendizaje por Asociación , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Impedancia Eléctrica , Estimulación Eléctrica/métodos , Miedo , Antagonistas de Receptores de GABA-A , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Receptores de GABA-A/genética , Receptores de Glutamato/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
11.
J Neurosci ; 30(2): 449-63, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071509

RESUMEN

The tyrosine kinase Pyk2 plays a unique role in intracellular signal transduction by linking Ca(2+) influx to tyrosine phosphorylation, but the molecular mechanism of Pyk2 activation is unknown. We report that Pyk2 oligomerization by antibodies in vitro or overexpression of PSD-95 in PC6-3 cells induces trans-autophosphorylation of Tyr402, the first step in Pyk2 activation. In neurons, Ca(2+) influx through NMDA-type glutamate receptors causes postsynaptic clustering and autophosphorylation of endogenous Pyk2 via Ca(2+)- and calmodulin-stimulated binding to PSD-95. Accordingly, Ca(2+) influx promotes oligomerization and thereby autoactivation of Pyk2 by stimulating its interaction with PSD-95. We show that this mechanism of Pyk2 activation is critical for long-term potentiation in the hippocampus CA1 region, which is thought to underlie learning and memory.


Asunto(s)
Encéfalo/citología , Quinasa 2 de Adhesión Focal/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Encéfalo/metabolismo , Calcio/metabolismo , Calmodulina/farmacología , Línea Celular Transformada , Homólogo 4 de la Proteína Discs Large , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Quinasa 2 de Adhesión Focal/inmunología , Proteínas Fluorescentes Verdes/genética , Inmunoprecipitación/métodos , Técnicas In Vitro , Ionomicina/farmacología , Ionóforos/farmacología , Masculino , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Dominios PDZ/fisiología , Técnicas de Placa-Clamp/métodos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Tetrodotoxina/farmacología , Transfección/métodos , Tirosina/metabolismo
12.
Hippocampus ; 21(10): 1053-61, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20865743

RESUMEN

The induction of long-term potentiation (LTP) of CA3-CA1 synapses requires activation of postsynaptic N-methyl-D-aspartate receptors (GluNRs). At resting potential, the contribution of GluNRs is limited by their voltage-dependent block by extracellular Mg(2+). High-frequency afferent stimulation is required to cause sufficient summation of excitatory synaptic potentials (EPSPs) to relieve this block and to permit an influx of Ca(2+). It has been assumed that this relief of Mg(2+) block is sufficient for induction. We postulated that the induction of LTP also requires a Src-dependent plasticity of GluNRs. Using whole-cell recordings, LTP (GluARs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors-EPSCS was induced by pairing postsynaptic depolarization with presynaptic stimulation. This LTP was both GluNR and Src-dependent, being sensitive to AP-5, a GluNR selective antagonist, or to SU6656, a Src-selective inhibitor. When CNQX was used to block all GluARs, we observed a long-lasting potentiation of GluNR-mediated EPSCs. This plasticity was prevented by transiently blocking GluNRs during the induction protocol or by chelating intracellular Ca(2+). GluNRs plasticity was also prevented by bath applications of SU6656 or intracellular applications of the Src-selective inhibitory peptide, Src(40-58). It was also blocked by preventing activation of protein kinase C, a kinase that is upstream of Src-kinase-dependent regulation of GluNRs. Both GluN2A and GluN2B receptors were found to contribute to the plasticity of GluNRs. The contribution of GluNRs and, in particular, their plasticity to the maintenance of LTP was explored using AP5 and SU6656, respectively. When applied >20 min after induction neither drug influenced the magnitude of LTP. However, when applied immediately after induction, treatment with either drug caused the initial magnitude of LTP to progressively decrease to a sustained phase of reduced amplitude. Collectively, our findings suggest that GluNR plasticity, although not strictly required for induction, is necessary for the maintenance of a nondecrementing component of LTP.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Familia-src Quinasas/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/efectos de los fármacos , Indoles/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Potenciales de la Membrana/fisiología , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores Presinapticos/efectos de los fármacos , Sulfonamidas/farmacología , Sinapsis/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Familia-src Quinasas/antagonistas & inhibidores
13.
J Physiol ; 587(Pt 5): 965-79, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19124544

RESUMEN

TRPM2 is a Ca(2+)-permeable member of the transient receptor potential melastatin family of cation channels whose activation by reactive oxygen/nitrogen species (ROS/RNS) and ADP-ribose (ADPR) is linked to cell death. While these channels are broadly expressed in the CNS, the presence of TRPM2 in neurons remains controversial and more specifically, whether they are expressed in neurons of the hippocampus is an open question. With this in mind, we examined whether functional TRPM2 channels are expressed in this neuronal population. Using a combination of molecular and biochemical approaches, we demonstrated the expression of TRPM2 transcripts and proteins in hippocampal pyramidal neurons. Whole-cell voltage-clamp recordings were subsequently carried out to assess the presence of TRPM2-mediated currents. Application of hydrogen peroxide or peroxynitrite to cultured hippocampal pyramidal neurons activated an inward current that was abolished upon removal of extracellular Ca(2+), a hallmark of TRPM2 activation. When ADPR (300 microM) was included in the patch pipette, a large inward current developed but only when depolarizing voltage ramps were continuously (1/10 s) applied to the membrane. This current exhibited a linear current-voltage relationship and was sensitive to block by TRPM2 antagonists (i.e. clotrimazole, flufenamic acid and N-(p-amylcinnamoyl)anthranilic acid (ACA)). The inductive effect of voltage ramps on the ADPR-dependent current required voltage-dependent Ca(2+) channels (VDCCs) and a rise in [Ca(2+)](i). Consistent with the need for a rise in [Ca(2+)](i), activation of NMDA receptors (NMDARs), which are highly permeable to Ca(2+), was also permissive for current development. Importantly, given the prominent vulnerability of CA1 neurons to free-radical-induced cell death, we confirmed that, with ADPR in the pipette, a brief application of NMDA could evoke a large inward current in CA1 pyramidal neurons from hippocampal slices that was abolished by the removal of extracellular Ca(2+), consistent with TRPM2 activation. Such a current was absent in interneurons of CA1 stratum radiatum. Finally, infection of cultured hippocampal neurons with a TRPM2-specific short hairpin RNA (shRNA(TRPM2)) significantly reduced both the expression of TRPM2 and the amplitude of the ADPR-dependent current. Taken together, these results indicate that hippocampal pyramidal neurons possess functional TRPM2 channels whose activation by ADPR is functionally coupled to VDCCs and NMDARs through a rise in [Ca(2+)](i).


Asunto(s)
Calcio/metabolismo , Clusterina/biosíntesis , Neuronas/metabolismo , Células Piramidales/metabolismo , Animales , Calcio/antagonistas & inhibidores , Calcio/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Clusterina/metabolismo , Clusterina/fisiología , Femenino , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología , Embarazo , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología
14.
Hippocampus ; 19(9): 779-89, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19173226

RESUMEN

Vasoactive intestinal peptide (VIP) is a 28-amino acid peptide, which belongs to a superfamily of structurally related peptide hormones including pituitary adenylate cyclase-activating polypeptide (PACAP). Although several studies have identified the involvement of PACAP in learning and memory, little work has been done to investigate such a role for VIP. At least three receptors for VIP have been identified including the PACAP receptor (PAC1-R) and the two VIP receptors (VPAC receptors). VIP can activate the PAC1-R only if it is used at relatively high concentrations (e.g., 100 nM); however, at lower concentrations (e.g., 1 nM) it is selective for the VPAC receptors. Our lab has showed that PAC1-R activation signals through PKC/CAKbeta/Src pathway to regulate NMDA receptors; however, there is little known about the potential regulation of NMDA receptors by VPAC receptors. Our studies demonstrated that application of 1 nM VIP enhanced NMDA currents by stimulating the VPAC receptors as the effect was blocked by VPAC receptor antagonist [Ac-Tyr(1), D-Phe(2)]GRF (1-29). This enhancement of NMDA currents was blocked by both Rp-cAMPS and PKI(14-22) (they are highly specific PKA inhibitors), but not by the specific PKC inhibitor, bisindolylmaleimide I. In addition, the VIP-induced enhancement of NMDA currents was accentuated by inhibition of phosphodiesterase 4, which inhibits the degradation of cAMP. This regulation of NMDA receptors also required the scaffolding protein AKAP. In contrast, the potentiation induced by high concentration of VIP (e.g., 100 nM) was mediated by PAC1-R as well as by Src kinase. Overall, these results show that VIP can regulate NMDA receptors through different receptors and signaling pathways.


Asunto(s)
Hipocampo/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Membrana Celular/fisiología , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Transducción de Señal , Tionucleótidos/farmacología , Factores de Tiempo
15.
J Neurosci Res ; 87(8): 1737-47, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19156871

RESUMEN

Gamma-aminobutyric acid type A receptors (GABA(A)Rs) that contain the alpha 5 subunit are expressed predominantly in the hippocampus, where they regulate learning and memory processes. Unlike conventional postsynaptic receptors, GABA(A)Rs containing the alpha 5 subunit (alpha 5 GABA(A)Rs) are localized primarily to extrasynaptic regions of neurons, where they generate a tonic inhibitory conductance. The unique characteristics of alpha 5 GABA(A)Rs have been examined with pharmacological, immunostaining, and electrophysiological techniques; however, little is known about their biochemical properties. The aim of this study was to modify existing purification and enrichment techniques to isolate alpha 5 GABA(A)Rs preferentially from the mouse hippocampus and to identify the alpha 5 subunit by using tandem mass spectroscopy (MS/MS). The results showed that the detergent solubility of the alpha 5 subunits was distinct from that of alpha1 and alpha2 subunits, and the relative distribution of the alpha 5 subunits in Triton X-100-soluble fractions was correlated with that of the extracellular protein radixin but not with that of the postsynaptic protein gephyrin. Mass spectrometry identified the alpha 5 subunit and showed that this subunit associates with multiple alpha, beta, and gamma subunits, but most frequently the beta 3 subunit. Thus, the alpha 5 subunits coassemble with similar subunits as their synaptic counterparts yet have a distinct detergent solubility profile. Mass spectroscopy now offers a method for detecting and characterizing factors that confer the unique detergent solubility and possibly cellular location of alpha 5 GABA(A)Rs in hippocampal neurons.


Asunto(s)
Fraccionamiento Químico/métodos , Espectrometría de Masas/métodos , Neuroquímica/métodos , Proteómica/métodos , Receptores de GABA-A/química , Receptores de GABA-A/fisiología , Animales , Proteínas del Citoesqueleto/metabolismo , Espacio Extracelular/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/fisiología , Neuronas/metabolismo , Neuronas/ultraestructura , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo , Solubilidad , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
16.
Neuron ; 35(1): 121-33, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12123613

RESUMEN

In vitro studies indicate a role for the LIM kinase family in the regulation of cofilin phosphorylation and actin dynamics. In addition, abnormal expression of LIMK-1 is associated with Williams syndrome, a mental disorder with profound deficits in visuospatial cognition. However, the in vivo function of this family of kinases remains elusive. Using LIMK-1 knockout mice, we demonstrate a significant role for LIMK-1 in vivo in regulating cofilin and the actin cytoskeleton. Furthermore, we show that the knockout mice exhibited significant abnormalities in spine morphology and in synaptic function, including enhanced hippocampal long-term potentiation. The knockout mice also showed altered fear responses and spatial learning. These results indicate that LIMK-1 plays a critical role in dendritic spine morphogenesis and brain function.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/deficiencia , Dendritas/patología , Hipocampo/anomalías , Potenciación a Largo Plazo/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Citoesqueleto de Actina/ultraestructura , Factores Despolimerizantes de la Actina , Animales , Células Cultivadas , Condicionamiento Psicológico/fisiología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Citoesqueleto/ultraestructura , Proteínas de Unión al ADN/genética , Dendritas/metabolismo , Dendritas/ultraestructura , Potenciales Postsinápticos Excitadores/genética , Miedo/fisiología , Femenino , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Quinasas Lim , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Actividad Motora/genética , Mutación/fisiología , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Inhibición Neural/genética , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/genética , Regulación hacia Arriba/genética , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Síndrome de Williams/patología
17.
Neuron ; 35(6): 1111-22, 2002 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-12354400

RESUMEN

Receptor tyrosine kinases (RTKs) are membrane spanning proteins with intrinsic kinase activity. Although these receptors are known to be involved in proliferation and differentiation of cells, their roles in regulating central synaptic transmission are largely unknown. In CA1 pyramidal neurons, activation of D2 class dopamine receptors depressed excitatory transmission mediated by the NMDA subtype of glutamate receptor. This depression resulted from the quinpirole-induced release of intracellular Ca(2+) and enhanced Ca(2+)-dependent inactivation of NMDA receptors. The dopamine receptor-mediated depression was dependent on the "transactivation" of PDGFRbeta. Therefore, RTK transactivation provides a novel mechanism of communication between dopaminergic and glutamatergic systems and might help to explain how reciprocal changes in these systems could be linked to the deficits in cognition, memory, and attention observed in schizophrenia and attention deficit hyperactivity disorder.


Asunto(s)
Hipocampo/metabolismo , Células Piramidales/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Calmodulina/metabolismo , Células Cultivadas , Dopamina/metabolismo , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Inhibidores Enzimáticos/farmacología , Hipocampo/efectos de los fármacos , Humanos , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Proteínas Tirosina Quinasas Receptoras/efectos de los fármacos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Dopamina D2/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
18.
Neuron ; 38(4): 611-24, 2003 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12765612

RESUMEN

Hippocampal CA1 homosynaptic long-term potentiation (LTP) is expressed specifically at activated synapses. Increased insertion of postsynaptic alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) appears to be crucial for CA1 LTP. However, the mechanism underlying AMPAR insertion during LTP remains largely unknown. We now report that phosphatidylinositol 3-kinase (PI3K) is complexed with AMPARs at synapses and activated by selective stimulation of synaptic N-methyl-D-aspartate (NMDA) receptors. Activation of the AMPAR-associated PI3K is required for the increased cell surface expression of AMPARs and LTP. Thus, our results strongly suggest that the AMPAR-PI3K complex may constitute a critical molecular signal responsible for AMPAR insertion at activated CA1 synapses during LTP, and consequently, this lipid kinase may serve to determine the polarity of NMDA receptor-dependent synaptic plasticity.


Asunto(s)
Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores AMPA/metabolismo , Androstadienos/farmacología , Animales , Células Cultivadas , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Morfolinas/farmacología , Plasticidad Neuronal/fisiología , Neuronas/citología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Wortmanina
19.
Biochim Biophys Acta ; 1768(4): 941-51, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17261268

RESUMEN

Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or "metaplasticity" is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Galphaq and Galphas coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.


Asunto(s)
Hipocampo/fisiología , Plasticidad Neuronal , Receptores Acoplados a Proteínas G/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Plasticidad Neuronal/genética , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Tirosina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Activación Transcripcional
20.
Trends Neurosci ; 29(2): 75-81, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16376999

RESUMEN

Since the early 1960s it has been known that restoring extracellular Ca2+ following a period of low Ca2+ concentrations paradoxically causes an increase in intracellular Ca2+ levels that can lead to cell death. The mystery of this 'Ca2+ paradox' is made more intriguing by observations that lowering concentrations of extracellular Ca2+ and/or Mg2+ paradoxically enhances the entry of Ca2+ into hippocampal neurons. Until recently, the entry of Ca2+ through NMDA receptors was accepted as the major pathway leading to the excitotoxic, delayed cell death associated with the ischemic periods of stroke. Here, we discuss how several transient receptor potential (TRP) channels are likely to contribute to both the Ca2+ paradox and the delayed death of neurons following an ischemic stroke.


Asunto(s)
Señalización del Calcio/fisiología , Muerte Celular/fisiología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Animales , Calcio/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas , Receptores de N-Metil-D-Aspartato/fisiología , Daño por Reperfusión/patología , Canales Catiónicos TRPM/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA