Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 479(16): 1709-1725, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35969127

RESUMEN

The protein kinases PAK4, PAK5 and PAK6 comprise a family of ohnologues. In multiple cancers including melanomas PAK5 most frequently carries non-synonymous mutations; PAK6 and PAK4 have fewer; and PAK4 is often amplified. To help interpret these genomic data, initially we compared the cellular regulation of the sister kinases and their roles in melanoma cells. In common with many ohnologue protein kinases, PAK4, PAK5 and PAK6 each have two 14-3-3-binding phosphosites of which phosphoSer99 is conserved. PAK4 localises to the leading edge of cells in response to phorbol ester-stimulated binding of 14-3-3 to phosphoSer99 and phosphoSer181, which are phosphorylated by two different PKCs or PKDs. These phosphorylations of PAK4 are essential for its phorbol ester-stimulated phosphorylation of downstream substrates. In contrast, 14-3-3 interacts with PAK5 in response to phorbol ester-stimulated phosphorylation of Ser99 and epidermal growth factor-stimulated phosphorylation of Ser288; whereas PAK6 docks onto 14-3-3 and is prevented from localising to cell-cell junctions when Ser133 is phosphorylated in response to cAMP-elevating agents via PKA and insulin-like growth factor 1 via PKB/Akt. Silencing of PAK4 impairs viability, migration and invasive behaviour of melanoma cells carrying BRAFV600E or NRASQ61K mutations. These defects are rescued by ectopic expression of PAK4, more so by a 14-3-3-binding deficient PAK4, and barely by PAK5 or PAK6. Together these genomic, biochemical and cellular data suggest that the oncogenic properties of PAK4 are regulated by PKC-PKD signalling in melanoma, while PAK5 and PAK6 are dispensable in this cancer.


Asunto(s)
Melanoma , Proteínas Quinasas , Humanos , Melanoma/genética , Ésteres del Forbol , Fosforilación , Proteínas Quinasas/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
2.
J Biol Chem ; 296: 100551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744286

RESUMEN

The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that plays a central role in inflammation. The GR activity is also modulated via protein-protein interactions, including binding of 14-3-3 proteins induced by GR phosphorylation. However, the specific phosphorylation sites on the GR that trigger these interactions and their functional consequences are less clear. Hence, we sought to examine this system in more detail. We used phosphorylated GR peptides, biophysical studies, and X-ray crystallography to identify key residues within the ligand-binding domain of the GR, T524 and S617, whose phosphorylation results in binding of the representative 14-3-3 protein 14-3-3ζ. A kinase screen identified misshapen-like kinase 1 (MINK1) as responsible for phosphorylating T524 and Rho-associated protein kinase 1 for phosphorylating S617; cell-based approaches confirmed the importance of both GR phosphosites and MINK1 but not Rho-associated protein kinase 1 alone in inducing GR-14-3-3 binding. Together our results provide molecular-level insight into 14-3-3-mediated regulation of the GR and highlight both MINK1 and the GR-14-3-3 axis as potential targets for future therapeutic intervention.


Asunto(s)
Proteínas 14-3-3/metabolismo , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Glucocorticoides/metabolismo , Treonina/metabolismo , Proteínas 14-3-3/genética , Células HEK293 , Humanos , Mutación , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Receptores de Glucocorticoides/genética , Treonina/genética , Activación Transcripcional
3.
Circ Res ; 124(5): 712-726, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30566039

RESUMEN

RATIONALE: SPEG (Striated muscle preferentially expressed protein kinase) has 2 kinase-domains and is critical for cardiac development and function. However, it is not clear how these 2 kinase-domains function to maintain cardiac performance. OBJECTIVE: To determine the molecular functions of the 2 kinase-domains of SPEG. METHODS AND RESULTS: A proteomics approach identified SERCA2a (sarcoplasmic/endoplasmic reticulum calcium ATPase 2a) as a protein interacting with the second kinase-domain but not the first kinase-domain of SPEG. Furthermore, the second kinase-domain of SPEG could phosphorylate Thr484 on SERCA2a, promote its oligomerization and increase calcium reuptake into the sarcoplasmic/endoplasmic reticulum in culture cells and primary neonatal rat cardiomyocytes. Phosphorylation of SERCA2a by SPEG enhanced its calcium-transporting activity without affecting its ATPase activity. Depletion of Speg in neonatal rat cardiomyocytes inhibited SERCA2a-Thr484 phosphorylation and sarcoplasmic reticulum calcium reuptake. Moreover, overexpression of SERCA2aThr484Ala mutant protein also slowed sarcoplasmic reticulum calcium reuptake in neonatal rat cardiomyocytes. In contrast, domain mapping and phosphorylation analysis revealed that the first kinase-domain of SPEG interacted and phosphorylated its recently identified substrate JPH2 (junctophilin-2). An inducible heart-specific Speg knockout mouse model was generated to further study this SPEG-SERCA2a signal nexus in vivo. Inducible deletion of Speg decreased SERCA2a-Thr484 phosphorylation and its oligomerization in the heart. Importantly, inducible deletion of Speg inhibited SERCA2a calcium-transporting activity and impaired calcium reuptake into the sarcoplasmic reticulum in cardiomyocytes, which preceded morphological and functional alterations of the heart and eventually led to heart failure in adult mice. CONCLUSIONS: Our data demonstrate that the 2 kinase-domains of SPEG may play distinct roles to regulate cardiac function. The second kinase-domain of SPEG is a critical regulator for SERCA2a. Our findings suggest that SPEG may serve as a new target to modulate SERCA2a activation for treatment of heart diseases with impaired calcium homeostasis.


Asunto(s)
Señalización del Calcio , Cardiomiopatía Dilatada/enzimología , Insuficiencia Cardíaca/enzimología , Proteínas Musculares/metabolismo , Miocitos Cardíacos/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Miocitos Cardíacos/patología , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Ratas , Retículo Sarcoplasmático/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
5.
Proc Natl Acad Sci U S A ; 113(26): 7219-24, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27307439

RESUMEN

Tre-2/USP6, BUB2, cdc16 domain family member 1 (the TBC domain is the GTPase activating protein domain) (TBC1D1) is a Rab GTPase activating protein that is phosphorylated on Ser(231) by the AMP-activated protein kinase (AMPK) in response to intracellular energy stress. However, the in vivo role and importance of this phosphorylation event remains unknown. To address this question, we generated a mouse model harboring a TBC1D1(Ser231Ala) knockin (KI) mutation and found that the KI mice developed obesity on a normal chow diet. Mechanistically, TBC1D1 is located on insulin-like growth factor 1 (IGF1) storage vesicles, and the KI mutation increases endocrinal and paracrinal/autocrinal IGF1 secretion in an Rab8a-dependent manner. Hypersecretion of IGF1 causes increased expression of lipogenic genes via activating the protein kinase B (PKB; also known as Akt)-mammalian target of rapamycin (mTOR) pathway in adipose tissues, which contributes to the development of obesity, diabetes, and hepatic steatosis as the KI mice age. Collectively, these findings demonstrate that the AMPK-TBC1D1 signaling nexus interacts with the PKB-mTOR pathway via IGF1 secretion, which consequently controls expression of lipogenic genes in the adipose tissue. These findings also have implications for drug discovery to combat obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Condrocitos/metabolismo , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones Transgénicos , Contracción Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Obesidad/genética , Fosforilación , Serina/metabolismo , Triglicéridos/metabolismo
6.
Diabetologia ; 60(2): 336-345, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27826658

RESUMEN

AIMS/HYPOTHESIS: TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab GTPase-activating protein (RabGAP) that has been implicated in regulating GLUT4 trafficking. TBC1D1 can be phosphorylated by the AMP-activated protein kinase (AMPK) on Ser231, which consequently interacts with 14-3-3 proteins. Given the key role for AMPK in regulating insulin-independent muscle glucose uptake, we hypothesised that TBC1D1-Ser231 phosphorylation and/or 14-3-3 binding may mediate AMPK-governed glucose homeostasis. METHODS: Whole-body glucose homeostasis and muscle glucose uptake were assayed in mice bearing a Tbc1d1 Ser231Ala-knockin mutation or harbouring skeletal muscle-specific Ampkα1/α2 (also known as Prkaa1/2) double-knockout mutations in response to an AMPK-activating agent, 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR). Exercise-induced muscle glucose uptake and exercise capacity were also determined in the Tbc1d1 Ser231Ala-knockin mice. RESULTS: Skeletal muscle-specific deletion of Ampkα1/a2 in mice prevented AICAR-induced hypoglycaemia and muscle glucose uptake. The Tbc1d1 Ser231Ala-knockin mutation also attenuated the glucose-lowering effect of AICAR in mice. Glucose uptake and cell surface GLUT4 content were significantly lower in muscle isolated from the Tbc1d1 Ser231Ala-knockin mice upon stimulation with a submaximal dose of AICAR. However, this Tbc1d1 Ser231Ala-knockin mutation neither impaired exercise-induced muscle glucose uptake nor affected exercise capacity in mice. CONCLUSIONS/INTERPRETATION: TBC1D1-Ser231 phosphorylation and/or 14-3-3 binding partially mediates AMPK-governed glucose homeostasis and muscle glucose uptake in a context-dependent manner.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Ejercicio Físico/fisiología , Proteínas Activadoras de GTPasa/genética , Glucosa/metabolismo , Ribonucleótidos/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/metabolismo , Animales , Transporte Biológico , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Músculo Esquelético/metabolismo , Mutación/genética , Fosforilación , Ribonucleótidos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
7.
J Biol Chem ; 290(50): 30030-41, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26499801

RESUMEN

Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease.


Asunto(s)
Encéfalo/metabolismo , Ayuno , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal , Encéfalo/efectos de los fármacos , Colforsina/farmacología , Humanos , Insulina/administración & dosificación , Fosforilación
8.
Bioinformatics ; 31(14): 2276-83, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25735772

RESUMEN

MOTIVATION: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. RESULTS: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from -6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. AVAILABILITY AND IMPLEMENTATION: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database.


Asunto(s)
Proteínas 14-3-3/metabolismo , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Sitios de Unión , Células HEK293 , Humanos , Redes Neurales de la Computación , Fosfopéptidos/química , Fosfoproteínas/química , Posición Específica de Matrices de Puntuación , Proteoma/metabolismo , Programas Informáticos , Máquina de Vectores de Soporte
9.
Mol Cell Proteomics ; 13(10): 2604-17, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24997996

RESUMEN

Viral double-stranded RNA (dsRNA) is the most important viral structure recognized by cytosolic pattern-recognition receptors of the innate immune system, and its recognition results in the activation of signaling cascades that stimulate the production of antiviral cytokines and apoptosis of infected cells. 14-3-3 proteins are ubiquitously expressed regulatory molecules that participate in a variety of cellular processes, and 14-3-3 protein-mediated signaling pathways are activated by cytoplasmic dsRNA in human keratinocytes. However, the functional role of 14-3-3 protein-mediated interactions during viral dsRNA stimulation has remained uncharacterized. Here, we used functional proteomics to identify proteins whose phosphorylation and interaction with 14-3-3 is modulated by dsRNA and to characterize the signaling pathways activated during cytosolic dsRNA-induced innate immune response in human HaCaT keratinocytes. Phosphoproteome analysis showed that several MAPK- and immune-response-related signaling pathways were activated after dsRNA stimulation. Interactome analysis identified RelA-associated inhibitor, high-mobility group proteins, and several proteins associated with host responses to viral infection as novel 14-3-3 target proteins. Functional studies showed that RelA-associated inhibitor regulated dsRNA-induced apoptosis and TNF production. Integrated network analyses of proteomic data revealed that sirtuin1 was a central molecule regulated by 14-3-3s during dsRNA stimulation. Further experiments showed that sirtuin 1 negatively regulated dsRNA-induced NFκB transcriptional activity, suppressed expression of antiviral cytokines, and protected cells from apoptosis in dsRNA-stimulated and encephalomyocarditis-virus-infected keratinocytes. In conclusion, our data highlight the importance of 14-3-3 proteins in antiviral responses and identify RelA-associated inhibitor and sirtuin 1 as novel regulators of antiviral innate immune responses.


Asunto(s)
Proteínas 14-3-3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Queratinocitos/metabolismo , Proteómica/métodos , ARN Bicatenario/metabolismo , Proteínas Represoras/metabolismo , Sirtuina 1/metabolismo , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/metabolismo , Línea Celular , Citosol/metabolismo , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/inmunología , Humanos , Inmunidad Innata , Queratinocitos/citología , Queratinocitos/inmunología , Queratinocitos/virología , Fosforilación , ARN Bicatenario/inmunología , ARN Viral/inmunología , ARN Viral/metabolismo , Transducción de Señal
10.
J Cell Sci ; 125(Pt 19): 4662-75, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22797923

RESUMEN

Here, we describe a phosphorylation-based reverse myristoyl switch for mammalian ZNRF2, and show that this E3 ubiquitin ligase and its sister protein ZNRF1 regulate the Na(+)/K(+) pump (Na(+)/K(+)ATPase). N-myristoylation localizes ZNRF1 and ZNRF2 to intracellular membranes and enhances their activity. However, when ZNRF2 is phosphorylated in response to agonists including insulin and growth factors, it binds to 14-3-3 and is released into the cytosol. On membranes, ZNRF1 and ZNRF2 interact with the Na(+)/K(+)ATPase α1 subunit via their UBZ domains, while their RING domains interact with E2 proteins, predominantly Ubc13 that, together with Uev1a, mediates formation of Lys63-ubiquitin linkages. ZNRF1 and ZNRF2 can ubiquitylate the cytoplasmic loop encompassing the nucleotide-binding and phosphorylation regions of the Na(+)/K(+)ATPase α1 subunit. Ouabain, a Na(+)/K(+)ATPase inhibitor and therapeutic cardiac glycoside, decreases ZNRF1 protein levels, whereas knockdown of ZNRF2 inhibits the ouabain-induced decrease of cell surface and total Na(+)/K(+)ATPase α1 levels. Thus, ZNRF1 and ZNRF2 are new players in regulation of the ubiquitous Na(+)/K(+)ATPase that is tuned to changing demands in many physiological contexts.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Membranas Intracelulares/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Membranas Intracelulares/efectos de los fármacos , Marcaje Isotópico , Ratones , Datos de Secuencia Molecular , Mutación/genética , Ouabaína/farmacología , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinación/efectos de los fármacos
11.
Biochem J ; 449(2): 479-89, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23078342

RESUMEN

AS160 (Akt substrate of 160 kDa) is a Rab GTPase-activating protein implicated in insulin control of GLUT4 (glucose transporter 4) trafficking. In humans, a truncation mutation (R363X) in one allele of AS160 decreased the expression of the protein and caused severe postprandial hyperinsulinaemia during puberty. To complement the limited studies possible in humans, we generated an AS160-knockout mouse. In wild-type mice, AS160 expression is relatively high in adipose tissue and soleus muscle, low in EDL (extensor digitorum longus) muscle and detectable in liver only after enrichment. Despite having lower blood glucose levels under both fasted and random-fed conditions, the AS160-knockout mice exhibited insulin resistance in both muscle and liver in a euglycaemic clamp study. Consistent with this paradoxical phenotype, basal glucose uptake was higher in AS160-knockout primary adipocytes and normal in isolated soleus muscle, but their insulin-stimulated glucose uptake and overall GLUT4 levels were markedly decreased. In contrast, insulin-stimulated glucose uptake and GLUT4 levels were normal in EDL muscle. The liver also contributes to the AS160-knockout phenotype via hepatic insulin resistance, elevated hepatic expression of phosphoenolpyruvate carboxykinase isoforms and pyruvate intolerance, which are indicative of increased gluconeogenesis. Overall, as well as its catalytic function, AS160 influences expression of other proteins, and its loss deregulates basal and insulin-regulated glucose homoeostasis, not only in tissues that normally express AS160, but also by influencing liver function.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Activadoras de GTPasa/genética , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Glucemia/metabolismo , Western Blotting , Células Cultivadas , Femenino , Proteínas Activadoras de GTPasa/deficiencia , Glucosa/metabolismo , Glucosa/farmacocinética , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Hipoglucemiantes/sangre , Hipoglucemiantes/farmacología , Técnicas In Vitro , Insulina/sangre , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Fosforilación/efectos de los fármacos
12.
Mol Cell Proteomics ; 10(10): M110.005751, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21725060

RESUMEN

Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Mitocondrias/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Animales , Sitios de Unión/genética , Biomarcadores/metabolismo , Bases de Datos de Proteínas , Células HEK293 , Humanos , Espectrometría de Masas , Ratones , Mitocondrias/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
13.
Am J Physiol Endocrinol Metab ; 302(9): E1036-43, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22318952

RESUMEN

AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulin- and contraction-stimulated muscle glucose uptake through regulating GLUT4 trafficking. Insulin increases AS160 phosphorylation at multiple Akt/PKB consensus sites, including Thr(649), and promotes its binding to 14-3-3 proteins through phospho-Thr(649). We recently provided genetic evidence that AS160-Thr(649) phosphorylation/14-3-3 binding plays a key role in mediating insulin-stimulated glucose uptake in muscle. Contraction has also been proposed to increase phosphorylation of AS160 and TBC1D1 via AMPK, which could be detected by a generic phospho-Akt substrate (PAS) antibody. Here, analysis of AS160 immunoprecipitates from muscle extracts with site-specific phospho-antibodies revealed that contraction and AICAR caused no increase but rather a slight decrease in phosphorylation of the major PAS recognition site AS160-Thr(649). In line with this, contraction failed to enhance 14-3-3 binding to AS160. Consistent with previous reports, we also observed that in situ contraction stimulated the signal intensity of PAS antibody immunoreactive protein of ∼150-160 kDa in muscle extracts. Using a TBC1D1 deletion mutant mouse, we showed that TBC1D1 protein accounted for the majority of the PAS antibody immunoreactive signals of ∼150-160 kDa in extracts of contracted muscles. Consistent with the proposed role of AS160-Thr(649) phosphorylation/14-3-3 binding in mediating glucose uptake, AS160-Thr(649)Ala knock-in mice displayed normal glucose uptake upon contraction and AICAR in isolated muscles. We conclude that the previously reported PAS antibody immunoreactive band ∼150-160 kDa, which were increased upon contraction, does not represent AS160 but TBC1D1, and that AS160-Thr(649)Ala substitution impairs insulin- but neither contraction- nor AICAR-stimulated glucose uptake in mouse skeletal muscle.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Insulina/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Sustitución de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Análisis de Varianza , Animales , Glucemia/metabolismo , Proteínas Activadoras de GTPasa/genética , Técnicas de Sustitución del Gen , Transportador de Glucosa de Tipo 4/metabolismo , Ratones , Ratones Transgénicos , Mutación , Fosforilación , Ribonucleótidos/fisiología , Transducción de Señal/fisiología
14.
Biochem J ; 433(3): 515-25, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21087211

RESUMEN

Compounds that inhibit signalling upstream of ERK (extracellular-signal-regulated kinase) are promising anticancer therapies, motivating research to define how this pathway promotes cancers. In the present study, we show that human capicúa represses mRNA expression for PEA3 (polyoma enhancer activator 3) Ets transcription factors ETV1, ETV4 and ETV5 (ETV is Ets translocation variant), and this repression is relieved by multisite controls of capicúa by ERK, p90(RSK) (p90 ribosomal S6 kinase) and 14-3-3 proteins. Specifically, 14-3-3 binds to p90(RSK)-phosphorylated Ser¹7³ of capicúa thereby modulating DNA binding to its HMG (high-mobility group) box, whereas ERK phosphorylations prevent binding of a C-terminal NLS (nuclear localization sequence) to importin α4 (KPNA3). ETV1, ETV4 and ETV5 mRNA levels in melanoma cells are elevated by siRNA (small interfering RNA) knockdown of capicúa, and decreased by inhibiting ERK and/or expressing a form of capicúa that cannot bind to 14-3-3 proteins. Capicúa knockdown also enhances cell migration. The findings of the present study give further mechanistic insights into why ETV1 is highly expressed in certain cancers, indicate that loss of capicúa can desensitize cells to the effects of ERK pathway inhibitors, and highlight interconnections among growth factor signalling, spinocerebellar ataxias and cancers.


Asunto(s)
Proteínas 14-3-3/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Represoras/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Humanos , Melanoma/metabolismo , Proteínas Proto-Oncogénicas c-ets/biosíntesis , Proteínas Proto-Oncogénicas c-ets/genética , ARN Mensajero/análisis , Factores de Transcripción/biosíntesis
15.
Mol Cell Proteomics ; 8(11): 2487-99, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19648646

RESUMEN

We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.


Asunto(s)
Proteínas 14-3-3/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteómica/métodos , Actinas/química , Apoptosis , Sitios de Unión , Cromatografía Liquida/métodos , Células HeLa , Humanos , Espectrometría de Masas/métodos , Modelos Biológicos , Péptidos/química , Proteoma , Transducción de Señal , Tripsina/química
16.
Biochem J ; 427(1): 69-78, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20141511

RESUMEN

More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Biología Computacional , Proteínas del Tejido Nervioso/metabolismo , Proteínas Quinasas/metabolismo , Proteínas 14-3-3/genética , Sitios de Unión , Western Blotting , Células Cultivadas , Dimerización , Humanos , Inmunoprecipitación , Riñón/citología , Riñón/metabolismo , Fosforilación , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Nat Commun ; 11(1): 2186, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32367034

RESUMEN

Diabetic cardiomyopathy is a progressive disease in diabetic patients, and myocardial insulin resistance contributes to its pathogenesis through incompletely-defined mechanisms. Striated muscle preferentially expressed protein kinase (SPEG) has two kinase-domains and is a critical cardiac regulator. Here we show that SPEG is phosphorylated on Ser2461/Ser2462/Thr2463 by protein kinase B (PKB) in response to insulin. PKB-mediated phosphorylation of SPEG activates its second kinase-domain, which in turn phosphorylates sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (SERCA2a) and accelerates calcium re-uptake into the SR. Cardiac-specific deletion of PKBα/ß or a high fat diet inhibits insulin-induced phosphorylation of SPEG and SERCA2a, prolongs SR re-uptake of calcium, and impairs cardiac function. Mice bearing a Speg3A mutation to prevent its phosphorylation by PKB display cardiac dysfunction. Importantly, the Speg3A mutation impairs SERCA2a phosphorylation and calcium re-uptake into the SR. Collectively, these data demonstrate that insulin resistance impairs this PKB-SPEG-SERCA2a signal axis, which contributes to the development of diabetic cardiomyopathy.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Homeostasis , Resistencia a la Insulina , Proteínas Musculares/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Cardiomiopatías Diabéticas/genética , Humanos , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Insulina/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Musculares/genética , Mutación , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal/genética
18.
Am J Physiol Endocrinol Metab ; 297(3): E665-75, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19531644

RESUMEN

TBC1D1 is a Rab-GTPase-activating protein (GAP) known to be phosphorylated in response to insulin, growth factors, pharmacological agonists that activate 5'-AMP-activated protein kinase (AMPK), and muscle contraction. Silencing TBC1D1 in L6 muscle cells by siRNA increases insulin-stimulated GLUT4 translocation, and overexpression of TBC1D1 in 3T3-L1 adipocytes with low endogenous TBC1D1 expression inhibits insulin-stimulated GLUT4 translocation, suggesting a role of TBC1D1 in regulating GLUT4 translocation. Aiming to unravel the regulation of TBC1D1 during contraction and the potential role of AMPK in intact skeletal muscle, we used EDL muscles from wild-type (WT) and AMPK kinase dead (KD) mice. We explored the site-specific phosphorylation of TBC1D1 Ser(237) and Thr(596) and their relation to 14-3-3 binding, a proposed mechanism for regulation of GAP function of TBC1D1. We show that muscle contraction increases 14-3-3 binding to TBC1D1 as well as phosphorylation of Ser(237) and Thr(596) in an AMPK-dependent manner. AMPK activation by AICAR induced similar Ser(237) and Thr(596) phosphorylation of, and 14-3-3 binding to, TBC1D1 as muscle contraction. Insulin did not increase Ser(237) phosphorylation or 14-3-3 binding to TBC1D1. However, insulin increased Thr(596) phosphorylation, and intriguingly this response was fully abolished in the AMPK KD mice. Thus, TBC1D1 is differentially regulated in response to insulin and contraction. This study provides genetic evidence to support an important role for AMPK in regulating TBC1D1 in response to both of these physiological stimuli.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Insulina/farmacología , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Femenino , Proteínas Activadoras de GTPasa , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Mutagénesis/fisiología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética
19.
Biochem J ; 409(2): 449-59, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17995453

RESUMEN

AS160 (Akt substrate of 160 kDa) and TBC1D1 are related RabGAPs (Rab GTPase-activating proteins) implicated in regulating the trafficking of GLUT4 (glucose transporter 4) storage vesicles to the cell surface. All animal species examined contain TBC1D1, whereas AS160 evolved with the vertebrates. TBC1D1 has two clusters of phosphorylated residues, either side of the second PTB (phosphotyrosine-binding domain). Each cluster contains a 14-3-3-binding site. When AMPK (AMP-activated protein kinase) is activated in HEK (human embryonic kidney)-293 cells, 14-3-3s bind primarily to pSer237 (where pSer is phosphorylated serine) in TBC1D1, whereas 14-3-3 binding depends primarily on pThr596 (where pThr is phosphorylated threonine) in cells stimulated with IGF-1 (insulin-like growth factor 1), EGF (epidermal growth factor) and PMA; and both pSer237 and pThr596 contribute to 14-3-3 binding in cells stimulated with forskolin. In HEK-293 cells, LY294002 inhibits phosphorylation of Thr596 of TBC1D1, and promotes phosphorylation of AMPK and Ser237 of TBC1D1. In vitro phosphorylation experiments indicated regulatory interactions among phosphorylated sites, for example phosphorylation of Ser235 prevents subsequent phosphorylation of Ser237. In rat L6 myotubes, endogenous TBC1D1 is strongly phosphorylated on Ser237 and binds to 14-3-3s in response to the AMPK activators AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside), phenformin and A-769662, whereas insulin promotes phosphorylation of Thr596 but not 14-3-3 binding. In contrast, AS160 is phosphorylated on its 14-3-3-binding sites (Ser341 and Thr642) and binds to 14-3-3s in response to insulin, but not A-769662, in L6 cells. These findings suggest that TBC1D1 and AS160 may have complementary roles in regulating vesicle trafficking in response to insulin and AMPK-activating stimuli in skeletal muscle.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Insulina/farmacología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Sitios de Unión , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Humanos , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/farmacología , Fibras Musculares Esqueléticas/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Filogenia , Ratas , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo
20.
Biochem J ; 407(2): 231-41, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17617058

RESUMEN

AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.


Asunto(s)
Proteínas 14-3-3/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Factor de Crecimiento Epidérmico/farmacología , Proteínas Activadoras de GTPasa/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Ribonucleótidos/farmacología , Aminoácidos , Aminoimidazol Carboxamida/farmacología , Sitios de Unión , Línea Celular , Humanos , Hipoglucemiantes/farmacología , Insulina , Fosforilación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA