Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 295(7): 2148-2159, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31919098

RESUMEN

PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.


Asunto(s)
Proteínas Bacterianas/genética , Redes y Vías Metabólicas/genética , Ácidos Fosfatidicos/metabolismo , Fosfolípidos/biosíntesis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Catálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis/genética , Ácidos Fosfatidicos/genética , Fosfolípidos/genética
2.
Mol Microbiol ; 114(4): 653-663, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32671874

RESUMEN

A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.


Asunto(s)
Bacillus subtilis/metabolismo , Ácidos Grasos/biosíntesis , Fosfolípidos/biosíntesis , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis , Fosfolípidos/metabolismo , Regulón
3.
Mol Microbiol ; 103(4): 698-712, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27875634

RESUMEN

The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram-negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram-positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp-synthetases (RelBs , RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Ácidos Grasos/metabolismo , Guanosina Trifosfato/metabolismo , Ligasas/genética , Potenciales de la Membrana/fisiología , Inanición/metabolismo , Cerulenina/farmacología , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Ácidos Grasos/biosíntesis , Estrés Fisiológico
4.
Cell Rep ; 42(1): 111955, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640333

RESUMEN

Delivery of cancer therapeutics to non-specific sites decreases treatment efficacy while increasing toxicity. In ovarian cancer, overexpression of the cell surface marker HER2, which several therapeutics target, relates to poor prognosis. We recently reported the assembly of biocompatible bacterial spore-like particles, termed "SSHELs." Here, we modify SSHELs with an affibody directed against HER2 and load them with the chemotherapeutic agent doxorubicin. Drug-loaded SSHELs reduce tumor growth and increase survival with lower toxicity in a mouse tumor xenograft model compared with free drug and with liposomal doxorubicin by preferentially accumulating in the tumor mass. Target cells actively internalize and then traffic bound SSHELs to acidic compartments, whereupon the cargo is released to the cytosol in a pH-dependent manner. We propose that SSHELs represent a versatile strategy for targeted drug delivery, especially in cancer settings.


Asunto(s)
Neoplasias , Esporas Bacterianas , Ratones , Humanos , Animales , Esporas Bacterianas/metabolismo , Sistemas de Liberación de Medicamentos , Membrana Celular/metabolismo , Neoplasias/metabolismo , Proteínas Bacterianas/metabolismo , Bacillus subtilis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA