Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(17): 8342-8349, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948633

RESUMEN

Proteorhodopsin (PR) is a highly abundant, pentameric, light-driven proton pump. Proton transfer is linked to a canonical photocycle typical for microbial ion pumps. Although the PR monomer is able to undergo a full photocycle, the question arises whether the pentameric complex formed in the membrane via specific cross-protomer interactions plays a role in its functional mechanism. Here, we use dynamic nuclear polarization (DNP)-enhanced solid-state magic-angle spinning (MAS) NMR in combination with light-induced cryotrapping of photointermediates to address this topic. The highly conserved residue H75 is located at the protomer interface. We show that it switches from the (τ)- to the (π)-tautomer and changes its ring orientation in the M state. It couples to W34 across the oligomerization interface based on specific His/Trp ring orientations while stabilizing the pKa of the primary proton acceptor D97 within the same protomer. We further show that specific W34 mutations have a drastic effect on D97 and proton transfer mediated through H75. The residue H75 defines a cross-protomer Asp-His-Trp triad, which potentially serves as a pH-dependent regulator for proton transfer. Our data represent light-dependent, functionally relevant cross talk between protomers of a microbial rhodopsin homo-oligomer.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Rodopsinas Microbianas , Histidina/química , Histidina/metabolismo , Isomerismo , Modelos Moleculares , Subunidades de Proteína/química , Secuencias Repetitivas de Aminoácido , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/ultraestructura , Triptófano/química , Triptófano/metabolismo
2.
J Am Chem Soc ; 137(28): 9032-43, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26102160

RESUMEN

Membrane proteins often form oligomeric complexes within the lipid bilayer, but factors controlling their assembly are hard to predict and experimentally difficult to determine. An understanding of protein-protein interactions within the lipid bilayer is however required in order to elucidate the role of oligomerization for their functional mechanism and stabilization. Here, we demonstrate for the pentameric, heptahelical membrane protein green proteorhodopsin that solid-state NMR could identify specific interactions at the protomer interfaces, if the sensitivity is enhanced by dynamic nuclear polarization. For this purpose, differently labeled protomers have been assembled into the full pentamer complex embedded within the lipid bilayer. We show for this proof of concept that one specific salt bridge determines the formation of pentamers or hexamers. Data are supported by laser-induced liquid bead ion desorption mass spectrometry and by blue native polyacrylamide gel electrophoresis analysis. The presented approach is universally applicable and opens the door toward analyzing membrane protein interactions within homo-oligomers directly in the membrane.


Asunto(s)
Proteínas Bacterianas/química , Proteobacteria/química , Rodopsinas Microbianas/química , Secuencia de Aminoácidos , Membrana Dobles de Lípidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína , Sales (Química)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA