Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Genes Dev ; 31(17): 1754-1769, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982759

RESUMEN

The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim-Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy.


Asunto(s)
Apoptosis/genética , Proteína 11 Similar a Bcl2/metabolismo , Dineínas/metabolismo , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Animales , Proteína 11 Similar a Bcl2/genética , Células CACO-2 , Línea Celular Tumoral , Regulación de la Expresión Génica , Células HeLa , Humanos , Células MCF-7 , Ratones , Unión Proteica , Multimerización de Proteína/genética , Estabilidad Proteica , Interferencia de ARN , Proteína X Asociada a bcl-2/genética
2.
J Mol Cell Cardiol ; 187: 1-14, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103633

RESUMEN

BACKGROUND: Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS: Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS: On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.


Asunto(s)
Sistema de Conducción Cardíaco , Miocardio , Ratones , Animales , Miocardio/metabolismo , Arritmias Cardíacas/metabolismo , Atrios Cardíacos , Sistema Nervioso Parasimpático
3.
Circ Res ; 128(2): 203-215, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33228470

RESUMEN

RATIONALE: The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes. Although continuous with the extracellular space, the narrow lumen and the tortuous structure of TT can form domains of restricted diffusion. As a result of unequal ion fluxes across cell surface and TT membranes, limited diffusion may generate ion gradients within TT, especially deep within the TT network and at high pacing rates. OBJECTIVE: We postulate that there may be an advective component to TT content exchange, wherein cyclic deformation of TT during diastolic stretch and systolic shortening serves to mix TT luminal content and assists equilibration with bulk extracellular fluid. METHODS AND RESULTS: Using electron tomography, we explore the 3-dimensional nanostructure of TT in rabbit ventricular myocytes, preserved at different stages of the dynamic cycle of cell contraction and relaxation. We show that cellular deformation affects TT shape in a sarcomere length-dependent manner and on a beat-by-beat time-scale. Using fluorescence recovery after photobleaching microscopy, we show that apparent speed of diffusion is affected by the mechanical state of cardiomyocytes, and that cyclic contractile activity of cardiomyocytes accelerates TT diffusion dynamics. CONCLUSIONS: Our data confirm the existence of an advective component to TT content exchange. This points toward a novel mechanism of cardiac autoregulation, whereby the previously implied increased propensity for TT luminal concentration imbalances at high electrical stimulation rates would be countered by elevated advection-assisted diffusion at high mechanical beating rates. The relevance of this mechanism in health and during pathological remodeling (eg, cardiac hypertrophy or failure) forms an exciting target for further research.


Asunto(s)
Acoplamiento Excitación-Contracción , Frecuencia Cardíaca , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Potenciales de Acción , Animales , Difusión , Tomografía con Microscopio Electrónico , Femenino , Recuperación de Fluorescencia tras Fotoblanqueo , Miocitos Cardíacos/ultraestructura , Conejos , Sarcolema/ultraestructura
4.
Cell Mol Life Sci ; 78(7): 3637-3656, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33555391

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


Asunto(s)
Antígenos CD59/metabolismo , Membrana Celular/metabolismo , Interacciones Huésped-Patógeno , Pulmón/microbiología , Proteínas de la Membrana/metabolismo , Pseudomonas aeruginosa/aislamiento & purificación , Trihexosilceramidas/metabolismo , Transporte Biológico , Antígenos CD59/genética , Endocitosis , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/patología , Humanos , Pulmón/metabolismo , Pulmón/patología , Proteínas de la Membrana/genética , Pseudomonas aeruginosa/fisiología , Transducción de Señal
5.
Europace ; 23(23 Suppl 1): i38-i47, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33404047

RESUMEN

AIMS: Patients with tetralogy of Fallot (TOF) are often affected by right ventricular fibrosis, which has been associated with arrhythmias. This study aimed to assess fibrosis distribution in right ventricular outflow tract (RVOT) myocardium of TOF patients to evaluate the utility of single histology-section analyses, and to explore the possibility of fibrosis quantification in unlabelled tissue by second harmonic generation imaging (SHGI) as an alternative to conventional histology-based assays. METHODS AND RESULTS: We quantified fibrosis in 11 TOF RVOT samples, using a tailor-made automated image analysis method on Picrosirius red-stained sections. In a subset of samples, histology- and SHGI-based fibrosis quantification approaches were compared. Fibrosis distribution was highly heterogeneous, with significant and comparable variability between and within samples. We found that, on average, 67.8 mm2 of 10 µm thick, histologically processed tissue per patient had to be analysed for accurate fibrosis quantification. SHGI provided data faster and on live tissue, additionally enabling quantification of collagen anisotropy. CONCLUSION: Given the high intra-individual heterogeneity, fibrosis quantification should not be conducted on single sections of TOF RVOT myectomies. We provide an analysis algorithm for fibrosis quantification in histological images, which enables the required extended volume analyses in these patients.


Asunto(s)
Tetralogía de Fallot , Colágeno , Fibrosis , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/cirugía , Humanos , Miocardio , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/cirugía
6.
J Mol Cell Cardiol ; 138: 269-282, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31866374

RESUMEN

Cellular specialization and interaction with other cell types in cardiac tissue is essential for the coordinated function of cell populations in the heart. The complex interplay between cardiomyocytes, endothelial cells and fibroblasts is necessary for adaptation but can also lead to pathophysiological remodeling. To understand this complex interplay, we developed 3D vascularized cardiac tissue mimetics (CTM) to study heterocellular cross-talk in hypertrophic, hypoxic and fibrogenic environments. This 3D platform responds to physiologic and pathologic stressors and mimics the microenvironment of diseased tissue. In combination with endothelial cell fluorescence reporters, these cardiac tissue mimetics can be used to precisely visualize and quantify cellular and functional responses upon stress stimulation. Utilizing this platform, we demonstrate that stimulation of α/ß-adrenergic receptors with phenylephrine (PE) promotes cardiomyocyte hypertrophy, metabolic maturation and vascularization of CTMs. Increased vascularization was promoted by conditioned medium of PE-stimulated cardiomyocytes and blocked by inhibiting VEGF or upon ß-adrenergic receptor antagonist treatment, demonstrating cardiomyocyte-endothelial cross-talk. Pathophysiological stressors such as severe hypoxia reduced angiogenic sprouting and increased cell death, while TGF ß2 stimulation increased collagen deposition concomitant to endothelial-to-mesenchymal transition. In sum, we have developed a cardiac 3D culture system that reflects native cardiac tissue function, metabolism and morphology - and for the first time enables the tracking and analysis of cardiac vascularization dynamics in physiology and pathology.


Asunto(s)
Biomimética , Neovascularización Fisiológica , Ingeniería de Tejidos , Animales , Células Cultivadas , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Fenilefrina/farmacología , Ratas Sprague-Dawley , Estrés Fisiológico/efectos de los fármacos
7.
Bioinformatics ; 35(13): 2340-2342, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475993

RESUMEN

MOTIVATION: Giant Unilamellar Vesicles (GUVs) are widely used synthetic membrane systems that mimic native membranes and cellular processes. Various fluorescence imaging techniques can be employed for their characterization. In order to guarantee a fast and unbiased analysis of imaging data, the development of automated recognition and processing steps is required. RESULTS: We developed a fast and versatile Fiji-based macro for the analysis of digital microscopy images of GUVs. This macro was designed to investigate membrane dye incorporation and protein binding to membranes. Moreover, we propose a fluorescence intensity-based method to quantitatively assess protein binding. AVAILABILITY AND IMPLEMENTATION: The ImageJ distribution package FIJI is freely available online: https://imagej.net/Fiji. The macro file GUV-AP.ijm is available at https://github.com/AG-Roemer/GUV-AP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Liposomas Unilamelares
8.
Basic Res Cardiol ; 115(6): 78, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33296022

RESUMEN

Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.


Asunto(s)
Aterosclerosis/terapia , Atorvastatina/farmacología , Proliferación Celular/efectos de los fármacos , LDL-Colesterol/sangre , Dieta con Restricción de Grasas , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Macrófagos/efectos de los fármacos , Placa Aterosclerótica , Animales , Apolipoproteína E3/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/sangre , Proteínas de Transferencia de Ésteres de Colesterol/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Receptores de LDL/genética
9.
Biochim Biophys Acta ; 1860(2): 392-401, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26546712

RESUMEN

BACKGROUND: Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. METHODS: Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. RESULTS: In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of ß1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. CONCLUSION: Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. GENERAL SIGNIFICANCE: After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity.


Asunto(s)
Aglutininas/fisiología , Integrina beta1/fisiología , Marasmius/química , Animales , Adhesión Celular , Células Cultivadas , Clatrina/fisiología , Perros , Dinaminas/fisiología , Endocitosis , Endosomas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/fisiología
10.
Biochim Biophys Acta ; 1863(6 Pt A): 1106-18, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26862060

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of ß-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the ß-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce ß-catenin degradation, which then represses processes that are directly linked to tissue recovery.


Asunto(s)
Proteínas Bacterianas/farmacología , Células Epiteliales/efectos de los fármacos , Lectinas/farmacología , beta Catenina/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Proteínas Bacterianas/genética , Western Blotting , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Integrina beta1/metabolismo , Lectinas/genética , Microscopía Confocal , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Recombinantes/farmacología , Factor de Transcripción ReIA/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 111(35): 12895-900, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136128

RESUMEN

Glycosphingolipids are important structural constituents of cellular membranes. They are involved in the formation of nanodomains ("lipid rafts"), which serve as important signaling platforms. Invasive bacterial pathogens exploit these signaling domains to trigger actin polymerization for the bending of the plasma membrane and the engulfment of the bacterium--a key process in bacterial uptake. However, it is unknown whether glycosphingolipids directly take part in the membrane invagination process. Here, we demonstrate that a "lipid zipper," which is formed by the interaction between the bacterial surface lectin LecA and its cellular receptor, the glycosphingolipid Gb3, triggers plasma membrane bending during host cell invasion of the bacterium Pseudomonas aeruginosa. In vitro experiments with Gb3-containing giant unilamellar vesicles revealed that LecA/Gb3-mediated lipid zippering was sufficient to achieve complete membrane engulfment of the bacterium. In addition, theoretical modeling elucidated that the adhesion energy of the LecA-Gb3 interaction is adequate to drive the engulfment process. In cellulo experiments demonstrated that inhibition of the LecA/Gb3 lipid zipper by either lecA knockout, Gb3 depletion, or application of soluble sugars that interfere with LecA binding to Gb3 significantly lowered P. aeruginosa uptake by host cells. Of note, membrane engulfment of P. aeruginosa occurred independently of actin polymerization, thus corroborating that lipid zippering alone is sufficient for this crucial first step of bacterial host-cell entry. Our study sheds new light on the impact of glycosphingolipids in the cellular invasion of bacterial pathogens and provides a mechanistic explication of the initial uptake processes.


Asunto(s)
Actinas/metabolismo , Glicoesfingolípidos/metabolismo , Microdominios de Membrana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Membrana Celular/metabolismo , Membrana Celular/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Glucolípidos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Modelos Biológicos , Transducción de Señal/fisiología , Esfingolípidos/metabolismo
12.
Chembiochem ; 17(15): 1403-6, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27168414

RESUMEN

Synthetic minimal membrane systems are extremely useful for better understanding of complex cellular structures and cell surface processes. We have developed a facile method for synthesis of cholesterylated peptides, each bearing a carbohydrate moiety and a fluorescent tag. The position of the cholesterol moiety on the peptide can be controlled by using a new Fmoc-protected cholesterol-triazole-lysine group, which we constructed by means of solid-phase peptide synthesis. We succeeded in integrating the glyco modules into giant unilamellar vesicles by electroformation or infusion in buffer solution. The glyco-decorated liposomes were recognized by a lectin and had unique topological membrane features. In conclusion, this work is a proof of principle for the functionalization of artificial membranes with a primitive synthetic glycocalyx useful for studying carbohydrate-protein interactions on a simplified cell-like membrane surface.


Asunto(s)
Colesterol/química , Glicocálix/química , Glicopéptidos/síntesis química , Membranas Artificiales , Glicopéptidos/química , Glicosilación , Lectinas/metabolismo , Técnicas de Síntesis en Fase Sólida/métodos , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
13.
J Allergy Clin Immunol ; 134(2): 420-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24679343

RESUMEN

BACKGROUND: Five different G protein-coupled sphingosine-1-phosphate (S1P) receptors (S1P1-S1P5) regulate a variety of physiologic and pathophysiologic processes, including lymphocyte circulation, multiple sclerosis (MS), and cancer. Although B-lymphocyte circulation plays an important role in these processes and is essential for normal immune responses, little is known about S1P receptors in human B cells. OBJECTIVE: To explore their function and signaling, we studied B-cell lines and primary B cells from control subjects, patients with leukemia, patients with S1P receptor inhibitor-treated MS, and patients with primary immunodeficiencies. METHODS: S1P receptor expression was analyzed by using multicolor immunofluorescence microscopy and quantitative PCR. Transwell assays were used to study cell migration. S1P receptor internalization was visualized by means of time-lapse imaging with fluorescent S1P receptor fusion proteins expressed by using lentiviral gene transfer. B-lymphocyte subsets were characterized by means of flow cytometry and immunofluorescence microscopy. RESULTS: Showing that different B-cell populations express different combinations of S1P receptors, we found that S1P1 promotes migration, whereas S1P4 modulates and S1P2 inhibits S1P1 signals. Expression of CD69 in activated B lymphocytes and B cells from patients with chronic lymphocytic leukemia inhibited S1P-induced migration. Studying B-cell lines, normal B lymphocytes, and B cells from patients with primary immunodeficiencies, we identified Bruton tyrosine kinase, ß-arrestin 2, LPS-responsive beige-like anchor protein, dedicator of cytokinesis 8, and Wiskott-Aldrich syndrome protein as critical signaling components downstream of S1P1. CONCLUSION: Thus S1P receptor signaling regulates human B-cell circulation and might be a factor contributing to the pathology of MS, chronic lymphocytic leukemia, and primary immunodeficiencies.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Inmunodeficiencia Variable Común/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Esclerosis Múltiple/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Agammaglobulinemia Tirosina Quinasa , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Arrestinas/genética , Arrestinas/inmunología , Arrestinas/metabolismo , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/patología , Línea Celular , Movimiento Celular , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/inmunología , Inmunodeficiencia Variable Común/patología , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/inmunología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/inmunología , Proteínas Tirosina Quinasas/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/inmunología , Transducción de Señal , Imagen de Lapso de Tiempo , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/inmunología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Arrestina beta 2 , beta-Arrestinas
14.
Cardiovasc Res ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041203

RESUMEN

BACKGROUND AND AIMS: The distinct functions of immune cells in atherosclerosis have been mostly defined by preclinical mouse studies. Contrastingly, the immune cell composition of human atherosclerotic plaques and their contribution to disease progression is only poorly understood. It remains uncertain whether genetic animal models allow for valuable translational approaches. METHODS AND RESULTS: Single cell RNA-sequencing (scRNA-seq) was performed to define the immune cell landscape in human carotid atherosclerotic plaques. The human immune cell repertoire demonstrated an unexpectedly high heterogeneity and was dominated by cells of the T-cell lineage, a finding confirmed by immunohistochemistry. Bioinformatical integration with 7 mouse scRNA-seq data sets from adventitial and atherosclerotic vascular tissue revealed a total of 51 identities of cell types and differentiation states, of which some were only poorly conserved between species and exclusively found in humans. Locations, frequencies, and transcriptional programs of immune cells in mouse models did not resemble the immune cell landscape in human carotid atherosclerosis. In contrast to standard mouse models of atherosclerosis, human plaque leukocytes were dominated by several T-cell phenotypes with transcriptional hallmarks of T-cell activation and memory formation, T-cell receptor-, and pro-inflammatory signaling. Only mice at the age of 22 months partially resembled the activated T-cell phenotype. In a validation cohort of 43 patients undergoing carotid endarterectomy, the abundance of activated immune cell subsets in the plaque defined by multi-color flow cytometry associated with the extend of clinical atherosclerosis. CONCLUSIONS: Integrative scRNA-seq reveals a substantial difference in the immune cell composition of murine and human carotid atherosclerosis - a finding that questions the translational value of standard mouse models for adaptive immune cell studies. Clinical associations suggest a specific role for T-cell driven (auto-) immunity in human plaque formation and -instability.

15.
Biochim Biophys Acta ; 1808(10): 2581-90, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21718688

RESUMEN

Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.


Asunto(s)
Lípidos de la Membrana/química , Proteínas de la Membrana/química , Ácido N-Acetilneuramínico/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Cationes , Células Cultivadas , Humanos , Microscopía Electrónica , Microscopía Fluorescente
16.
Adv Exp Med Biol ; 740: 383-410, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22453951

RESUMEN

Ca(2+) release activated Ca(2+) (CRAC) channels mediate robust Ca(2+) influx when the endoplasmic reticulum Ca(2+) stores are depleted. This essential process for T-cell activation as well as degranulation of mast cells involves the Ca(2+) sensor STIM1, located in the endoplasmic reticulum and the Ca(2+) selective Orai1 channel in the plasma membrane. Our review describes the CRAC signaling pathway, the activation of which is initiated by a drop in the endoplasmic Ca(2+) level sensed by STIM1. This in term induces multimerisation and puncta-formation of STIM1 proteins is followed by their coupling to and activation of Orai channels. Consequently Ca(2+) entry is triggered through the Orai pore into the cytosol with subsequent closure of the channel by Ca(2+)-dependent inactivation. We will portray a mechanistic view of the events coupling STIM1 to Orai activation based on their structure and biophysics.


Asunto(s)
Canales de Calcio/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Animales , Compuestos de Boro/farmacología , Canales de Calcio/química , Humanos , Proteínas de la Membrana/química , Proteínas de Neoplasias/química , Proteína ORAI1 , Estrés Oxidativo , Multimerización de Proteína , Transducción de Señal , Molécula de Interacción Estromal 1
17.
Nat Commun ; 13(1): 1758, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365619

RESUMEN

Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells. Using analysis methods we present here, we decipher how motion blur hides cellular structures and how slow structure motions cover decisive fast motions.


Asunto(s)
Actinas , Iluminación , Fibroblastos , Microscopía Fluorescente/métodos
18.
ACS Synth Biol ; 11(12): 3929-3938, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36367814

RESUMEN

Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.


Asunto(s)
Toxina del Cólera , Fusión de Membrana , Glucolípidos , Liposomas/química , Lectinas
19.
J Biol Chem ; 285(52): 41135-42, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20961852

RESUMEN

Store-operated calcium entry is essential for many signaling processes in nonexcitable cells. The best studied store-operated calcium current is the calcium release-activated calcium (CRAC) current in T-cells and mast cells, with Orai1 representing the essential pore forming subunit. Although it is known that functional CRAC channels in store-depleted cells are composed of four Orai1 subunits, the stoichiometric composition in quiescent cells is still discussed controversially: both a tetrameric and a dimeric stoichiometry of resting state Orai1 have been reported. We obtained here robust and similar FRET values on labeled tandem repeat constructs of Orai1 before and after store depletion, suggesting an unchanged tetrameric stoichiometry. Moreover, we directly visualized the stoichiometry of mobile Orai1 channels in live cells using a new single molecule recording modality that combines single molecule tracking and brightness analysis. By alternating imaging and photobleaching pulses, we recorded trajectories of single, fluorescently labeled Orai1 channels, with each trajectory consisting of bright and dim segments, corresponding to higher and lower numbers of colocalized active GFP label. The according brightness values were used for global fitting and statistical analysis, yielding a tetrameric subunit composition of mobile Orai1 channels in resting cells.


Asunto(s)
Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Multimerización de Proteína/fisiología , Animales , Células CHO , Canales de Calcio/genética , Membrana Celular/genética , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteína ORAI1 , Estructura Cuaternaria de Proteína
20.
Nanoscale ; 13(7): 4016-4028, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503085

RESUMEN

Interactions of the bacterial lectin LecA with the host cells glycosphingolipid Gb3 have been shown to be crucial for the cellular uptake of the bacterium Pseudomonas aeruginosa. LecA-induced Gb3 clustering, referred to as lipid zipper mechanism, leads to full membrane engulfment of the bacterium. Here, we aim for a nanoscale force characterization of this mechanism using two complementary force probing techniques, atomic force microscopy (AFM) and optical tweezers (OT). The LecA-Gb3 interactions are reconstituted using giant unilamellar vesicles (GUVs), a well-controlled minimal system mimicking the plasma membrane and nanoscale forces between either bacteria (PAO1 wild-type and LecA-deletion mutant strains) or LecA-coated probes (as minimal, synthetic bacterial model) and vesicles are measured. LecA-Gb3 interactions strengthen the bacterial attachment to the membrane (1.5-8-fold) depending on the membrane tension and the applied technique. Moreover, significantly less energy (reduction up to 80%) is required for the full uptake of LecA-coated beads into Gb3-functionalized vesicles. This quantitative approach highlights that lectin-glycolipid interactions provide adequate forces and energies to drive bacterial attachment and uptake.


Asunto(s)
Adhesinas Bacterianas , Lectinas , Adhesinas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Lectinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Liposomas Unilamelares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA