Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 683: 149077, 2023 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-37890200

RESUMEN

Targeted cytokine delivery has been gaining popularity in cancer immunotherapy since systemic recombinant cytokine treatment has not been successful due to low response rate and systemic toxicities in the clinical studies. In order to address these issues, we propose a new concept that cytokine signal is specifically activated at tumor-micro-environment (TME) by delivering two protein subunits of heterodimeric cytokine fused with a tumor targeting antibody respectively to TME and by bridging the two subunits into active heterodimeric form.Interleukin-12 (IL-12) is one of the major cytokines which can induce immune activation. IL-12 consists of two protein subunits which are p35 and p40. IL-12 signaling is initiated when it forms as the heterodimeric protein and binds to IL-12 receptor complex. We made fusion proteins of both IL-12p35 and IL-12p40 targeting specific tumor associated antigens (TAAs) and demonstrated the formation of bioactive IL12p70 with TME targeting antibody toward both p35 and p40 to form as the active molecule. We describe our concept validation in an in vitro based functional assay.


Asunto(s)
Citocinas , Neoplasias , Humanos , Subunidades de Proteína , Interleucina-12 , Proteínas Recombinantes , Neoplasias/terapia , Subunidad p40 de la Interleucina-12 , Microambiente Tumoral
2.
Mol Ther ; 28(2): 664-676, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31843448

RESUMEN

Patients with α-dystroglycanopathies, a subgroup of rare congenital muscular dystrophies, present with a spectrum of clinical manifestations that includes muscular dystrophy as well as CNS and ocular abnormalities. Although patients with α-dystroglycanopathies are genetically heterogeneous, they share a common defect of aberrant post-translational glycosylation modification of the dystroglycan alpha-subunit, which renders it defective in binding to several extracellular ligands such as laminin-211 in skeletal muscles, agrin in neuromuscular junctions, neurexin in the CNS, and pikachurin in the eye, leading to various symptoms. The genetic heterogeneity associated with the development of α-dystroglycanopathies poses significant challenges to developing a generalized treatment to address the spectrum of genetic defects. Here, we propose the development of a bispecific antibody (biAb) that functions as a surrogate molecular linker to reconnect laminin-211 and the dystroglycan beta-subunit to ameliorate sarcolemmal fragility, a primary pathology in patients with α-dystroglycan-related muscular dystrophies. We show that the treatment of LARGEmyd-3J mice, an α-dystroglycanopathy model, with the biAb improved muscle function and protected muscles from exercise-induced damage. These results demonstrate the viability of a biAb that binds to laminin-211 and dystroglycan simultaneously as a potential treatment for patients with α-dystroglycanopathy.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Distroglicanos/metabolismo , Laminina/metabolismo , Síndrome de Walker-Warburg/metabolismo , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/metabolismo , Modelos Animales de Enfermedad , Distroglicanos/inmunología , Expresión Génica , Humanos , Inmunohistoquímica , Inyecciones Intramusculares , Laminina/genética , Laminina/inmunología , Ratones , Ratones Noqueados , Modelos Biológicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas/genética , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Síndrome de Walker-Warburg/tratamiento farmacológico , Síndrome de Walker-Warburg/etiología
3.
Antibodies (Basel) ; 9(4)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172091

RESUMEN

Bispecific molecules are biologically significant, yet their complex structures pose important manufacturing and pharmacokinetic challenges. Nevertheless, owing to similarities with monoclonal antibodies (mAbs), IgG-like bispecifics conceptually align well with conventional expression and manufacturing platforms and often exhibit potentially favorable drug metabolism and pharmacokinetic (DMPK) properties. However, IgG-like bispecifics do not possess target bivalency and current designs often require tedious engineering and purification to ensure appropriate chain pairing. Here, we present a near-native IgG antibody format, the 2xVH, which can create bivalency for each target or epitope and requires no engineering for cognate chain pairing. In this modality, two different variable heavy (VH) domains with distinct binding specificities are grafted onto the first constant heavy (CH1) and constant light (CL) domains, conferring the molecule with dual specificity. To determine the versatility of this format, we characterized the expression, binding, and stability of several previously identified soluble human VH domains. By grafting these domains onto an IgG scaffold, we generated several prototype 2xVH IgG and Fab molecules that display similar properties to mAbs. These molecules avoided the post-expression purification necessary for engineered bispecifics while maintaining a capacity for simultaneous dual binding. Hence, the 2xVH format represents a bivalent, bispecific design that addresses limitations of manufacturing IgG-like bispecifics while promoting biologically-relevant dual target engagement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA