Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 591(7848): 124-130, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33494096

RESUMEN

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/fisiopatología , Interferones/antagonistas & inhibidores , Interferones/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Secuencia de Bases , COVID-19/sangre , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/inmunología , Interferones/metabolismo , Masculino , Neutrófilos/inmunología , Neutrófilos/patología , Dominios Proteicos , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Receptores de IgG/inmunología , Análisis de la Célula Individual , Carga Viral/inmunología
2.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L262-L269, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401383

RESUMEN

Microbes, toxins, therapeutics, and cells are often instilled into lungs of mice to model diseases and test experimental interventions. Consistent pulmonary delivery is critical for experimental power and reproducibility, but we observed variation in outcomes between handlers using different anesthetic approaches for intranasal dosing in mice. We therefore used a radiotracer to quantify lung delivery after intranasal dosing under inhalational (isoflurane) versus injectable (ketamine/xylazine) anesthesia in C57BL/6 mice. We found that ketamine/xylazine anesthesia resulted in delivery of a greater proportion (52 ± 9%) of an intranasal dose to lungs relative to isoflurane anesthesia (30 ± 15%). This difference in pulmonary dose delivery altered key outcomes in models of viral and bacterial pneumonia, with mice anesthetized with ketamine/xylazine for intranasal infection with influenza A virus or Pseudomonas aeruginosa developing more robust lung inflammation responses relative to control animals randomized to isoflurane anesthesia. Pulmonary dosing efficiency through oropharyngeal aspiration was not affected by anesthetic method and resulted in delivery of 63 ± 8% of dose to lungs, and a nonsurgical intratracheal dosing approach further increased lung delivery to 92 ± 6% of dose. The use of either of these more precise dosing methods yielded greater experimental power in the bacterial pneumonia model relative to intranasal infection. Both anesthetic approach and dosing route can impact pulmonary dosing efficiency. These factors affect experimental power and so should be considered when planning and reporting studies involving delivery of fluids to lungs of mice.NEW & NOTEWORTHY Many lung research studies involve dosing fluids into lungs of mice. In this study, the authors measure lung deposition using intranasal (i.n.), oropharyngeal aspiration (o.a.), and intratracheal (i.t.) dosing methods in mice. Anesthetic approach and administration route were found to affect pulmonary dosing efficiency. The authors demonstrate that refinements to dosing techniques can enable reductions in the number of animals needed for bacterial and viral pneumonia studies.


Asunto(s)
Anestesia , Anestésicos , Isoflurano , Ketamina , Animales , Ratones , Anestesia/métodos , Pulmón , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Xilazina
4.
Am J Respir Cell Mol Biol ; 62(3): 364-372, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31647878

RESUMEN

The immune system is designed to robustly respond to pathogenic stimuli but to be tolerant to endogenous ligands to not trigger autoimmunity. Here, we studied an endogenous damage-associated molecular pattern, mitochondrial DNA (mtDNA), during primary graft dysfunction (PGD) after lung transplantation. We hypothesized that cell-free mtDNA released during lung ischemia-reperfusion triggers neutrophil extracellular trap (NET) formation via TLR9 signaling. We found that mtDNA increases in the BAL fluid of experimental PGD (prolonged cold ischemia followed by orthotopic lung transplantation) and not in control transplants with minimal warm ischemia. The adoptive transfer of mtDNA into the minimal warm ischemia graft immediately before lung anastomosis induces NET formation and lung injury. TLR9 deficiency in neutrophils prevents mtDNA-induced NETs, and TLR9 deficiency in either the lung donor or recipient decreases NET formation and lung injury in the PGD model. Compared with human lung transplant recipients without PGD, severe PGD was associated with high levels of BAL mtDNA and NETs, with evidence of relative deficiency in DNaseI. We conclude that mtDNA released during lung ischemia-reperfusion triggers TLR9-dependent NET formation and drives lung injury. In PGD, DNaseI therapy has a potential dual benefit of neutralizing a major NET trigger (mtDNA) in addition to dismantling pathogenic NETs.


Asunto(s)
Isquemia Fría/efectos adversos , ADN Mitocondrial/farmacología , Trampas Extracelulares/metabolismo , Neutrófilos/efectos de los fármacos , Disfunción Primaria del Injerto/inmunología , Receptor Toll-Like 9/fisiología , Lesión Pulmonar Aguda/etiología , Animales , Líquido del Lavado Bronquioalveolar/citología , Citrulinación , ADN Mitocondrial/administración & dosificación , Desoxirribonucleasa I/metabolismo , Humanos , Trasplante de Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Disfunción Primaria del Injerto/metabolismo , Arginina Deiminasa Proteína-Tipo 4/deficiencia , Arginina Deiminasa Proteína-Tipo 4/fisiología , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Organismos Libres de Patógenos Específicos , Receptor Toll-Like 9/deficiencia , Isquemia Tibia/efectos adversos
5.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1127-L1140, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30908937

RESUMEN

Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the Klk1 gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the KLK1 mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.


Asunto(s)
Apoptosis/fisiología , Macrófagos Alveolares/patología , Infecciones por Orthomyxoviridae/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Calicreínas de Tejido/metabolismo , Células A549 , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/virología , Animales , Línea Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Perros , Factor Estimulante de Colonias de Granulocitos y Macrófagos/análisis , Humanos , Subtipo H3N2 del Virus de la Influenza A , Células Asesinas Naturales/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Enfermedad Pulmonar Obstructiva Crónica/virología , Mucosa Respiratoria/metabolismo , Calicreínas de Tejido/antagonistas & inhibidores , Calicreínas de Tejido/genética
6.
Biol Chem ; 399(9): 959-971, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29604204

RESUMEN

Human tissue kallikreins (KLKs) are 15 members of the serine protease family and are present in various healthy human tissues including airway tissues. Multiple studies have revealed their crucial role in the pathophysiology of a number of chronic, infectious and tumour lung diseases. KLK1, 3 and 14 are involved in asthma pathogenesis, and KLK1 could be also associated with the exacerbation of this inflammatory disease caused by rhinovirus. KLK5 was demonstrated as an influenza virus activating protease in humans, and KLK1 and 12 could also be involved in the activation and spread of these viruses. KLKs are associated with lung cancer, with up- or downregulation of expression depending on the KLK, cancer subtype, stage of tumour and also the microenvironment. Functional studies showed that KLK12 is a potent pro-angiogenic factor. Moreover, KLK6 promotes malignant-cell proliferation and KLK13 invasiveness. In contrast, KLK8 and KLK10 reduce proliferation and invasion of malignant cells. Considering the involvement of KLKs in various physiological and pathological processes, KLKs appear to be potential biomarkers and therapeutic targets for lung diseases.


Asunto(s)
Calicreínas/metabolismo , Enfermedades Pulmonares/enzimología , Proliferación Celular , Humanos , Enfermedades Pulmonares/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología
7.
Biol Chem ; 399(9): 1053-1064, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883316

RESUMEN

Every year, influenza A virus (IAV) affects and kills many people worldwide. The viral hemagglutinin (HA) is a critical actor in influenza virus infectivity which needs to be cleaved by host serine proteases to exert its activity. KLK5 has been identified as an activating protease in humans with a preference for the H3N2 IAV subtype. We investigated the origin of this preference using influenza A/Puerto Rico/8/34 (PR8, H1N1) and A/Scotland/20/74 (Scotland, H3N2) viruses. Pretreatment of noninfectious virions with human KLK5 increased infectivity of Scotland IAV in MDCK cells and triggered influenza pneumonia in mice. These effects were not observed with the PR8 IAV. Molecular modeling and in vitro enzymatic studies of peptide substrates and recombinant HAs revealed that the sequences around the cleavage site do not represent the sole determinant of the KLK5 preference for the H3N2 subtype. Using mouse Klk5 and Klk5-deficient mice, we demonstrated in vitro and in vivo that the mouse ortholog protease is not an IAV activating enzyme. This may be explained by unfavorable interactions between H3 HA and mKlk5. Our data highlight the limitations of some approaches used to identify IAV-activating proteases.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Influenza A/metabolismo , Calicreínas/metabolismo , Serina Proteasas/metabolismo , Animales , Perros , Humanos , Calicreínas/deficiencia , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , Modelos Moleculares , Estaciones del Año
8.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28615200

RESUMEN

Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans.IMPORTANCE Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals. However, the specific proteases that activate seasonal influenza viruses, especially H3N2 viruses, in the human respiratory tract have remain undefined despite many years of work. Here we demonstrate that the secreted, extracellular protease KLK5 (kallikrein-related peptidase 5) is efficient in promoting the infectivity of H3N2 IAV in vitro and in vivo Furthermore, we found that its secretion was selectively enhanced in the human lower respiratory tract during a seasonal outbreak dominated by an H3N2 virus. Collectively, our data support the clinical relevance of this protease in human influenza pathogenesis.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Calicreínas/metabolismo , Animales , Peso Corporal , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Proteolisis , Análisis de Supervivencia
9.
Biochimie ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494107

RESUMEN

A long-term exposure to cigarette smoke (CS) alters the integrity of airway epithelial barrier, contributes to lung dysfunction, and elicits the expression and activity of lung cathepsin S (CatS), a cysteine protease that participates in the remodeling of connective tissue and cell junctions. Here, we observed that a short-term (4 days) exposure of mice to CS increased the expression and activity of CatS, while the expression level of zonula occludens 1 (ZO-1), an epithelial tight junction protein that stabilizes barrier assembly, was reduced in lung tissue lysates. Present data support that proteolytically active CatS may contribute to the defect of ZO-1 in CS-exposed mice.

10.
Res Sq ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38077002

RESUMEN

The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.

11.
Sci Adv ; 10(31): eadm8836, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083602

RESUMEN

In the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, epithelial populations in the distal lung expressing Angiotensin-converting enzyme 2 (ACE2) are infrequent, and therefore, the model of viral expansion and immune cell engagement remains incompletely understood. Using human lungs to investigate early host-viral pathogenesis, we found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations. Human alveolar macrophages (AMs) reliably expressed ACE2 allowing both spike-ACE2-dependent viral entry and infection. In contrast to Influenza A virus, SARS-CoV-2 infection of AMs was productive, amplifying viral titers. While AMs generated new viruses, the interferon responses to SARS-CoV-2 were muted, hiding the viral dissemination from specific antiviral immune responses. The reliable and veiled viral depot in myeloid cells in the very early phases of SARS-CoV-2 infection of human lungs enables viral expansion in the distal lung and potentially licenses subsequent immune pathologies.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Pulmón , Macrófagos Alveolares , Células Mieloides , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Macrófagos Alveolares/virología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Células Mieloides/virología , Células Mieloides/metabolismo , Células Mieloides/inmunología , Internalización del Virus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Tropismo Viral
12.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-36778478

RESUMEN

Microbes, toxins, therapeutics and cells are often instilled into lungs of mice to model diseases and test experimental interventions. Consistent pulmonary delivery is critical for experimental power and reproducibility, but we observed variation in outcomes between handlers using different anesthetic approaches for intranasal dosing into mice. We therefore used a radiotracer to quantify lung delivery after intranasal dosing under inhalational (isoflurane) versus injectable (ketamine/xylazine) anesthesia in C57BL/6 mice. We found that ketamine/xylazine anesthesia resulted in delivery of a greater proportion (52±9%) of an intranasal dose to lungs relative to isoflurane anesthesia (30±15%). This difference in pulmonary dose delivery altered key outcomes in models of viral and bacterial pneumonia, with mice anesthetized with ketamine/xylazine for intranasal infection with influenza A virus or Pseudomonas aeruginosa developing more robust lung inflammation responses relative to control animals randomized to isoflurane anesthesia. Pulmonary dosing efficiency through oropharyngeal aspiration was not affected by anesthetic method and resulted in delivery of 63±8% of dose to lungs, and a non-surgical intratracheal dosing approach further increased lung delivery to 92±6% of dose. Use of either of these more precise dosing methods yielded greater experimental power in the bacterial pneumonia model relative to intranasal infection. Both anesthetic approach and dosing route can impact pulmonary dosing efficiency. These factors affect experimental power and so should be considered when planning and reporting studies involving delivery of fluids to lungs of mice.

13.
Diagnostics (Basel) ; 13(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37189536

RESUMEN

Sepsis, the leading cause of mortality in hospitals, currently lacks effective early diagnostics. A new cellular host response test, the IntelliSep test, may provide an indicator of the immune dysregulation characterizing sepsis. The objective of this study was to examine the correlation between the measurements performed using this test and biological markers and processes associated with sepsis. Phorbol myristate acetate (PMA), an agonist of neutrophils known to induce neutrophil extracellular trap (NET) formation, was added to whole blood of healthy volunteers at concentrations of 0, 200, and 400 nM and then evaluated using the IntelliSep test. Separately, plasma from a cohort of subjects was segregated into Control and Diseased populations and tested for levels of NET components (citrullinated histone (cit-H3) DNA and neutrophil elastase (NE) DNA) using customized ELISA assays and correlated with ISI scores from the same patient samples. Significant increases in IntelliSep Index (ISI) scores were observed with increasing concentrations of PMA in healthy blood (0 and 200: p < 10-10; 0 and 400: p < 10-10). Linear correlation was observed between the ISI and quantities of NE DNA and Cit-H3 DNA in patient samples. Together these experiments demonstrate that the IntelliSep test is associated with the biological processes of leukocyte activation and NETosis and may indicate changes consistent with sepsis.

14.
Stem Cell Reports ; 18(3): 636-653, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36827975

RESUMEN

Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Humanos , SARS-CoV-2 , Organoides , Tetraspaninas/genética
15.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192546

RESUMEN

Platelets have a wide range of functions including critical roles in hemostasis, thrombosis, and immunity. We hypothesized that during acute inflammation, such as in life-threatening sepsis, there are fundamental changes in the sites of platelet production and phenotypes of resultant platelets. Here, we showed during sepsis that the spleen was a major site of megakaryopoiesis and platelet production. Sepsis provoked an adrenergic-dependent mobilization of megakaryocyte-erythrocyte progenitors (MEPs) from the bone marrow to the spleen, where IL-3 induced their differentiation into megakaryocytes (MKs). In the spleen, immune-skewed MKs produced a CD40 ligandhi platelet population with potent immunomodulatory functions. Transfusions of post-sepsis platelets enriched from splenic production enhanced immune responses and reduced overall mortality in sepsis-challenged animals. These findings identify a spleen-derived protective platelet population that may be broadly immunomodulatory in acute inflammatory states such as sepsis.


Asunto(s)
Plaquetas , Sepsis , Animales , Plaquetas/metabolismo , Ligando de CD40 , Megacariocitos , Sepsis/metabolismo , Bazo
16.
bioRxiv ; 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35592107

RESUMEN

In the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, considerable focus has been placed on a model of viral entry into host epithelial populations, with a separate focus upon the responding immune system dysfunction that exacerbates or causes disease. We developed a precision-cut lung slice model to investigate very early host-viral pathogenesis and found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations in the human lung. Infection of alveolar macrophages was partially dependent upon their expression of ACE2, and the infections were productive for amplifying virus, both findings which were in contrast with their neutralization of another pandemic virus, Influenza A virus (IAV). Compared to IAV, SARS-CoV-2 was extremely poor at inducing interferon-stimulated genes in infected myeloid cells, providing a window of opportunity for modest titers to amplify within these cells. Endotracheal aspirate samples from humans with the acute respiratory distress syndrome (ARDS) from COVID-19 confirmed the lung slice findings, revealing a persistent myeloid depot. In the early phase of SARS-CoV-2 infection, myeloid cells may provide a safe harbor for the virus with minimal immune stimulatory cues being generated, resulting in effective viral colonization and quenching of the immune system.

17.
Res Sq ; 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35611333

RESUMEN

In the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic1, considerable focus has been placed on a model of viral entry into host epithelial populations, with a separate focus upon the responding immune system dysfunction that exacerbates or causes disease. We developed a precision-cut lung slice model2,3 to investigate very early host-viral pathogenesis and found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations in the human lung. Infection of alveolar macrophages was partially dependent upon their expression of ACE2, and the infections were productive for amplifying virus, both findings which were in contrast with their neutralization of another pandemic virus, Influenza A virus (IAV). Compared to IAV, SARS-CoV-2 was extremely poor at inducing interferon-stimulated genes in infected myeloid cells, providing a window of opportunity for modest titers to amplify within these cells. Endotracheal aspirate samples from humans with the acute respiratory distress syndrome (ARDS) from COVID-19 confirmed the lung slice findings, revealing a persistent myeloid depot. In the early phase of SARS-CoV-2 infection, myeloid cells may provide a safe harbor for the virus with minimal immune stimulatory cues being generated, resulting in effective viral colonization and quenching of the immune system.

18.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36346670

RESUMEN

Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.


Asunto(s)
Trasplante de Pulmón , Disfunción Primaria del Injerto , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK , Disfunción Primaria del Injerto/etiología , Factor de Necrosis Tumoral alfa , Trasplante de Pulmón/efectos adversos , Pulmón/metabolismo
19.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132956

RESUMEN

Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8-/- mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.


Asunto(s)
Proteínas ADAM/genética , Antígenos CD/genética , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , ARN/genética , Síndrome de Dificultad Respiratoria/genética , Proteínas ADAM/biosíntesis , Animales , Antígenos CD/biosíntesis , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología
20.
Br J Pharmacol ; 177(21): 4851-4865, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32462701

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 infections has led to a substantial unmet need for treatments, many of which will require testing in appropriate animal models of this disease. Vaccine trials are already underway, but there remains an urgent need to find other therapeutic approaches to either target SARS-CoV-2 or the complications arising from viral infection, particularly the dysregulated immune response and systemic complications which have been associated with progression to severe COVID-19. At the time of writing, in vivo studies of SARS-CoV-2 infection have been described using macaques, cats, ferrets, hamsters, and transgenic mice expressing human angiotensin I converting enzyme 2 (ACE2). These infection models have already been useful for studies of transmission and immunity, but to date only partly model the mechanisms involved in human severe COVID-19. There is therefore an urgent need for development of animal models for improved evaluation of efficacy of drugs identified as having potential in the treatment of severe COVID-19. These models need to reproduce the key mechanisms of COVID-19 severe acute respiratory distress syndrome and the immunopathology and systemic sequelae associated with this disease. Here, we review the current models of SARS-CoV-2 infection and COVID-19-related disease mechanisms and suggest ways in which animal models can be adapted to increase their usefulness in research into COVID-19 pathogenesis and for assessing potential treatments. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Modelos Animales de Enfermedad , Neumonía Viral/tratamiento farmacológico , Animales , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Progresión de la Enfermedad , Desarrollo de Medicamentos , Humanos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Especificidad de la Especie , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA