Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(7): e17400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007244

RESUMEN

Species exploiting seasonal environments must alter timings of key life-history events in response to large-scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among-species variation in long-term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life-history variables. Accordingly, we fitted multi-quantile regressions to 59 years of multi-species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life-history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long-distance and short-distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology-abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life-histories showed systematically differing phenological changes over six decades contextualised by large-scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co-occurrences.


Asunto(s)
Migración Animal , Aves , Estaciones del Año , Animales , Migración Animal/fisiología , Aves/fisiología , Escocia , Ecosistema , Rasgos de la Historia de Vida , Cambio Climático , Dieta
2.
Conserv Biol ; 38(3): e14226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38111958

RESUMEN

Freshwater ecosystems and their bordering wetlands and riparian zones are vital for human society and biological diversity. Yet, they are among the most degraded ecosystems, where sharp declines in biodiversity are driven by human activities, such as hydropower development, agriculture, forestry, and fisheries. Because freshwater ecosystems are characterized by strongly reciprocal linkages with surrounding landscapes, human activities that encroach on or degrade riparian zones ultimately lead to declines in freshwater-riparian ecosystem functioning. We synthesized results of a symposium on freshwater, riparian, and wetland processes and interactions and analyzed some of the major problems associated with improving freshwater and riparian research and management. Three distinct barriers are the lack of involvement of local people in conservation research and management, absence of adequate measurement of biodiversity in freshwater and riparian ecosystems, and separate legislation and policy on riparian and freshwater management. Based on our findings, we argue that freshwater and riparian research and conservation efforts should be integrated more explicitly. Best practices for overcoming the 3 major barriers to improved conservation include more and sustainable use of traditional and other forms of local ecological knowledge, choosing appropriate metrics for ecological research and monitoring of restoration efforts, and mirroring the close links between riparian and freshwater ecosystems in legislation and policy. Integrating these 3 angles in conservation science and practice will provide substantial benefits in addressing the freshwater biodiversity crisis.


Tres grandes pasos hacia la conservación de la biodiversidad ribereña y de agua dulce Resumen Los ecosistemas de agua dulce y los humedales y zonas ribereñas que los bordean son vitales para la sociedad y la biodiversidad. Sin embargo, se encuentran entre los ecosistemas más degradados en donde las declinaciones graves de la biodiversidad son causadas por actividades humanas como el desarrollo hidroeléctrico, la agricultura, la silvicultura y las pesquerías. Puesto que los ecosistemas de agua dulce se caracterizan por tener un vínculo recíproco con los paisajes que los rodean, las actividades humanas que invaden o degradan las zonas ribereñas terminan en la declinación del funcionamiento del ecosistema ribereño de agua dulce. Sintetizamos los resultados de un simposio sobre los procesos e interacciones de agua dulce, ribereños y de humedales y analizamos algunos de los principales problemas asociados con la mejora de la investigación y gestión de agua dulce y ríos. Tres barreras claras son la falta de participación de la población local en la investigación y gestión de la conservación, la ausencia de una medición adecuada de la biodiversidad en los ecosistemas de agua dulce y ribereños, y una legislación y política separadas sobre la gestión ribereña y de agua dulce. Con base en nuestros hallazgos, argumentamos que la investigación y los esfuerzos de conservación de agua dulce y ríos deberían integrarse de manera más explícita. Las mejores prácticas para sobreponerse a las tres grandes barreras incluyen un mayor uso sustentable de los conocimientos tradicionales y otras formas de conocimiento, la selección de medidas apropiadas para la investigación ecológica y el monitoreo de los esfuerzos de restauración y la replicación de los vínculos cercanos entre los ecosistemas ribereños y de agua dulce en la legislación y en las políticas. La integración de estos tres ángulos dentro de las ciencias y prácticas de conservación proporcionará beneficios importantes en la manera de abordar la crisis de la biodiversidad de agua dulce.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Agua Dulce , Ríos , Conservación de los Recursos Naturales/métodos , Humedales
3.
Environ Manage ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907108

RESUMEN

We review the negative impacts of vinasse, a byproduct of alcohol distillation, on Brazil's freshwater ecosystems. We found a total of 37 pollution events between the years 1935 and 2023, with this number almost certainly an underestimate due to underreporting and/or unassessed events. Pollution by vinasse occurred both through accidents (e.g., tank failure) and deliberately (i.e., opening of floodgates), although in many cases the causes remain undetermined. All pollution events caused fish kills, with some records reporting negative effects on other organisms as well (i.e., crustaceans and reptiles). Pollution by vinasse, and associated negative effects, was reported for 11 states, with a notable number of cases in São Paulo. Most cases of vinasse pollution and negative impacts on biodiversity were recorded in rivers, followed by streams and reservoirs. Some of the affected river systems harbour threatened freshwater fishes. Hydrological connectivity means that pollution could have propagated along watercourses. Given these consequences of vinasse pollution on biodiversity, ecosystem functioning and services, we recommend a number of remedial actions.

4.
Environ Manage ; 73(5): 913-919, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424176

RESUMEN

Brazil is among the main contributors to global biodiversity, which, in turn, provides extensive ecosystem services. Agriculture is an activity that benefits greatly from these ecosystem services, but at the same time is degrading aquatic and terrestrial ecosystems and eroding Brazilian biodiversity. This conflict is growing, as emerging unsustainable legislative proposals that will benefit the agricultural sector are likely to accelerate the decline of biodiversity. One such initiative (Bill 1282/2019) would change Brazil's "Forest Code" (Law 12,651/2012) to facilitate construction of irrigation dams in Permanent Preservation Areas, a category that includes strips (with or without vegetation) along the edges of watercourses. Two other similar bills are advancing through committees in the Chamber of Deputies. Here we provide details of these three bills and discuss their consequences for Brazil's biodiversity if they are approved. Expected negative impacts with changes in the legislation include: increased deforestation; siltation; habitat fragmentation; introduction of non-native species; reduction in the availability of aquatic habitats; and changes in biogeochemical process. These proposals jeopardize biodiversity and may compromise the negotiations for an agreement between Mercosur and the European Union.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Brasil , Biodiversidad , Bosques , Agricultura
5.
Proc Biol Sci ; 290(1993): 20222273, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36809807

RESUMEN

Recent research has uncovered rapid compositional and structural reorganization of ecological assemblages, with these changes particularly evident in marine ecosystems. However, the extent to which these ongoing changes in taxonomic diversity are a proxy for change in functional diversity is not well understood. Here we focus on trends in rarity to ask how taxonomic rarity and functional rarity covary over time. Our analysis, drawing on 30 years of scientific trawl data, reveals that the direction of temporal shifts in taxonomic rarity in two Scottish marine ecosystems is consistent with a null model of change in assemblage size (i.e. change in numbers of species and/or individuals). In both cases, however, functional rarity increases, as assemblages become larger, rather than showing the expected decrease. These results underline the importance of measuring both taxonomic and functional dimensions of diversity when assessing and interpreting biodiversity change.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Peces
6.
Proc Biol Sci ; 290(1998): 20222450, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161334

RESUMEN

Alien species are widely linked to biodiversity change, but the extent to which they are associated with the reshaping of ecological communities is not well understood. One possible mechanism is that assemblages where alien species are found exhibit elevated temporal turnover. To test this, we identified assemblages of vascular plants in the BioTIME database for those assemblages in which alien species are either present or absent and used the Jaccard measure to compute compositional dissimilarity between consecutive censuses. We found that, although alien species are typically rare in invaded assemblages, their presence is associated with an increase in the average rate of compositional change. These differences in compositional change between invaded and uninvaded assemblages are not linked to differences in species richness but rather to species replacement (turnover). Rapid compositional restructuring of assemblages is a major contributor to biodiversity change, and as such, our results suggest a role for alien species in bringing this about.


Asunto(s)
Tracheophyta , Biodiversidad , Bases de Datos Factuales , Especies Introducidas
7.
Glob Chang Biol ; 28(1): 46-53, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669982

RESUMEN

The species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years. Although 90% of the assemblages diverged in species composition from the baseline year, this compositional change was largely driven by only 8% of the species' trajectories. Quantifying the reorganization of assemblages based on species shared temporal dynamics should facilitate the task of monitoring and restoring biodiversity. We suggest ways in which our framework could provide informative measures of compositional change, as well as leverage future research on pattern and process in ecological systems.


Asunto(s)
Biodiversidad , Peces , Animales , Ecosistema , Plantas
8.
Proc Natl Acad Sci U S A ; 115(8): 1843-1847, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29440416

RESUMEN

The Earth's ecosystems are under unprecedented pressure, yet the nature of contemporary biodiversity change is not well understood. Growing evidence that community size is regulated highlights the need for improved understanding of community dynamics. As stability in community size could be underpinned by marked temporal turnover, a key question is the extent to which changes in both biodiversity dimensions (temporal α- and temporal ß-diversity) covary within and among the assemblages that comprise natural communities. Here, we draw on a multiassemblage dataset (encompassing vertebrates, invertebrates, and unicellular plants) from a tropical freshwater ecosystem and employ a cyclic shift randomization to assess whether any directional change in temporal α-diversity and temporal ß-diversity exceeds baseline levels. In the majority of cases, α-diversity remains stable over the 5-y time frame of our analysis, with little evidence for systematic change at the community level. In contrast, temporal ß-diversity changes are more prevalent, and the two diversity dimensions are decoupled at both the within- and among-assemblage level. Consequently, a pressing research challenge is to establish how turnover supports regulation and when elevated temporal ß-diversity jeopardizes community integrity.


Asunto(s)
Biodiversidad , Modelos Biológicos , Animales , Simulación por Computador , Peces/clasificación , Agua Dulce , Invertebrados/clasificación , Plantas/clasificación , Dinámica Poblacional
9.
J Fish Biol ; 99(3): 1079-1086, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34080198

RESUMEN

Understanding how the biodiversity of freshwater fish assemblages changes over time is an important challenge. Until recently most emphasis has been on taxonomic diversity, but it is now clear that measures of functional diversity (FD) can shed new light on the mechanisms that underpin this temporal change. Fish biologists use different currencies, such as numerical abundance and biomass, to measure the abundance of fish species. Nonetheless, because they are not necessarily equivalent, these alternative currencies have the potential to reveal different insights into trends of FD in natural assemblages. In this study, the authors asked how conclusions about temporal trends in FD are influenced by the way in which the abundance of species has been quantified. To do this, the authors computed two informative metrics, for each currency, for 16 freshwater fish assemblages in Trinidad's Northern Range that had been surveyed repeatedly over 5 years. The authors found that numerical abundance and biomass uncover different directional trends in these assemblages for each facet of FD, and as such inform hypotheses about the ways in which these systems are being restructured. On the basis of these results, the authors concluded that a combined approach, in which both currencies are used, contributes to our understanding of the ecological processes that are involved in biodiversity change in freshwater fish assemblages.


Asunto(s)
Ecosistema , Peces , Animales , Biodiversidad , Biomasa , Agua Dulce
10.
Proc Biol Sci ; 287(1933): 20200889, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32811304

RESUMEN

Overexploitation is recognized as one of the main threats to global biodiversity. Here, we report a widespread change in the functional diversity of fisheries catches from the large marine ecosystems (LMEs) of the world over the past 65 years (1950 to 2014). The spatial and temporal trends of functional diversity exploited from the LMEs were calculated using global reconstructed marine fisheries catch data provided by the Sea Around Us initiative (including subsistence, artisanal, recreational, industrial fisheries, and discards) and functional trait data available in FishBase. Our analyses uncovered a substantial increase in the functional richness of both ray-finned fishes (80% of LMEs) and cartilaginous species (sharks and rays) (75% of LMESs), in line with an increase in the taxonomic richness, extracted from these ecosystems. The functional evenness and functional divergence of these catches have also altered substantially over the time span of this study, with considerable geographic variation in the patterns detected. These trends show that global fisheries are increasingly targeting species that play diverse roles within the marine ecosystem and underline the importance of incorporating functional diversity in ecosystem management.


Asunto(s)
Biodiversidad , Explotaciones Pesqueras/estadística & datos numéricos , Animales , Organismos Acuáticos , Biomasa , Conservación de los Recursos Naturales , Ecosistema , Peces , Tiburones
11.
Ecol Lett ; 22(5): 847-854, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30874368

RESUMEN

Scientists disagree about the nature of biodiversity change. While there is evidence for widespread declines from population surveys, assemblage surveys reveal a mix of declines and increases. These conflicting conclusions may be caused by the use of different metrics: assemblage metrics may average out drastic changes in individual populations. Alternatively, differences may arise from data sources: populations monitored individually, versus whole-assemblage monitoring. To test these hypotheses, we estimated population change metrics using assemblage data. For a set of 23 241 populations, 16 009 species, in 158 assemblages, we detected significantly accelerating extinction and colonisation rates, with both rates being approximately balanced. Most populations (85%) did not show significant trends in abundance, and those that did were balanced between winners (8%) and losers (7%). Thus, population metrics estimated with assemblage data are commensurate with assemblage metrics and reveal sustained and increasing species turnover.


Asunto(s)
Biodiversidad , Dinámica Poblacional
12.
Biol Lett ; 15(5): 20190133, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31088282

RESUMEN

The world's ecosystems are experiencing unparalleled rates of biodiversity change, with invasive species implicated as one of the drivers that restructure local assemblages. Here we focus on the processes leading to biodiversity change in a biodiversity hotspot, the Brazilian Cerrado. The null expectation that invasion leads to increase in local species richness is supported by our investigation of the grass layer in two key habitats (campo sujo and campo úmido). Our analysis uncovered a linear relationship between total richness and invasive richness at the plot level. However, because the invasive species-even though few in number-are widespread, their contribution to local richness (α-diversity) is offset by their homogenizing influence on composition (ß-diversity). We thus identify a mechanism that can help explain the paradox that species richness is not declining in many local assemblages, yet compositional change is exceeding the predictions of ecological theory. As such, our results emphasize the importance of quantifying both α-diversity and ß-diversity in assessments of biodiversity change in the contemporary world.


Asunto(s)
Biodiversidad , Ecosistema , Brasil , Especies Introducidas
13.
J Fish Biol ; 94(1): 96-102, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30447070

RESUMEN

Marine fish are an irreplaceable resource, but are currently under threat through overfishing and climate change. To date, most of the emphasis has been on single stocks or populations of economic importance. However, commercially valuable species are embedded in assemblages of many species and there is only limited understanding of the extent to which the structure of whole communities has altered in recent years. Most assemblages are dominated by one or a few species, with these highly abundant species underpinning ecosystem services and harvesting decisions. This paper shows that there have been marked temporal changes in the dominance structure of Scottish marine-fish assemblages over the past three decades, where dominance is measured as the proportional numerical abundance of the most dominant species. We report contrasting patterns in both the identity of the dominant species and shifts in the relative abundance of the dominant in assemblages to the east and west of Scotland, UK. This result highlights the importance of multi-species analyses of harvested stocks and has implications not only for fisheries management but also for consumer choices.


Asunto(s)
Biodiversidad , Ecosistema , Peces/fisiología , Animales , Cambio Climático , Explotaciones Pesqueras , Jerarquia Social , Escocia
14.
Proc Biol Sci ; 285(1870)2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321293

RESUMEN

Variation in predation risk is a major driver of ecological and evolutionary change, and, in turn, of geographical variation in behaviour. While predation risk is rarely constant in natural populations, the extent to which variation in predation risk shapes individual behaviour in wild populations remains unclear. Here, we investigated individual differences in reproductive behaviour in 16 Trinidadian guppy populations and related it to the observed variation in predator biomass each population experienced. Our results show that high heterogeneity in predator biomass is linked to individual behavioural diversification. Increased within-population heterogeneity in predator biomass is also associated with behavioural polymorphism. Some individuals adjust the frequency of consensual mating behaviour in response to differences in sex ratio context, while others display constantly at elevated frequencies. This pattern is analogous to a 'live fast, die young' pace-of-life syndrome. Notably, both high and low mean differences in predator biomass led to a homogenization of individual frequency of consensual mating displays. Overall, our results demonstrate that individual behavioural variation is associated with heterogeneity in predator biomass, but not necessarily with changes in mean values of predator biomass. We suggest that heterogeneity in predator biomass is an informative predictor of adaptive responses to changes in biotic conditions.


Asunto(s)
Variación Biológica Individual , Poecilia/fisiología , Conducta Predatoria/fisiología , Conducta Sexual Animal/fisiología , Adaptación Psicológica , Animales , Evolución Biológica , Copulación , Masculino , Modelos Estadísticos , Razón de Masculinidad
15.
Glob Ecol Biogeogr ; 27(7): 760-786, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30147447

RESUMEN

MOTIVATION: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. MAIN TYPES OF VARIABLES INCLUDED: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. SPATIAL LOCATION AND GRAIN: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). TIME PERIOD AND GRAIN: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. MAJOR TAXA AND LEVEL OF MEASUREMENT: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. SOFTWARE FORMAT: .csv and .SQL.

16.
Biol Lett ; 14(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899131

RESUMEN

Ecological assemblages are inherently uneven, with numerically dominant species contributing disproportionately to ecosystem services. Marked biodiversity change due to growing pressures on the world's ecosystems is now well documented. However, the hypothesis that dominant species are becoming relatively more abundant has not been tested. We examined the prediction that the dominance structure of contemporary communities is shifting, using a meta-analysis of 110 assemblage timeseries. Changes in relative and absolute dominance were evaluated with mixed and cyclic-shift permutation models. Our analysis uncovered no evidence of a systematic change in either form of dominance, but established that relative dominance is preserved even when assemblage size (total N) changes. This suggests that dominance structure is regulated alongside richness and assemblage size, and highlights the importance of investigating multiple components of assemblage diversity when evaluating ecosystem responses to environmental drivers.


Asunto(s)
Biodiversidad , Animales , Ecosistema , Modelos Teóricos , Plantas
17.
BMC Biol ; 15(1): 14, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28264673

RESUMEN

The tropics are the repository of much of the world's biodiversity, yet are undersampled relative to temperate regions. To help fill this knowledge gap, a paper in BMC Biology explores diversity patterns in tropical African plants, as revealed by the RAINBIO database. The paper documents spatial variation in diversity and data coverage, but also highlights the challenges faced in quantifying diversity patterns using data collated from a range of sources including herbaria.See research article: http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-017-0356-8 .


Asunto(s)
Biodiversidad , Clima Tropical , Geografía , Encuestas y Cuestionarios
18.
Ecology ; 98(2): 583-590, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864922

RESUMEN

We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation.


Asunto(s)
Biodiversidad , Ecología , Incertidumbre
19.
Proc Biol Sci ; 281(1791): 20141336, 2014 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-25100702

RESUMEN

To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species-a result of density-dependence-is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change.


Asunto(s)
Biodiversidad , Ecosistema , Peces/fisiología , Animales , Biomasa , Inglaterra , Estuarios , Densidad de Población , Estaciones del Año
20.
BMC Ecol ; 14: 18, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24925225

RESUMEN

BACKGROUND: The guppy (Poecilia reticulata) is a successful invasive species. It is also a species that mates multiply; previous studies have demonstrated that this strategy carries fitness benefits. Guppies are routinely introduced to tanks and troughs in regions outside their native range for mosquito-control purposes, and often spread beyond these initial confines into natural water bodies with negative ecological consequences. Here, using a mesocosm set up that resembles the containers into which single guppies are typically introduced for mosquito control, we ask whether singly-mated females are at a disadvantage, relative to multiply-mated females, when it comes to founding a population. Treatments were monitored for one year. RESULTS: A key finding was that mating history did not predict establishment success, which was 88% in both treatments. Furthermore, analysis of behavioural traits revealed that the descendants of singly-mated females retained antipredator behaviours, and that adult males showed no decrease in courtship vigour. Also, we detected no differences in behavioural variability between treatments. CONCLUSIONS: These results suggest that even when denied the option of multiple mating, singly-mated female guppies can produce viable populations, at least at the founder stage. This may prove to be a critical advantage in typical introduction scenarios where few individuals are released into enclosed water bodies before finding their way into natural ecosystems.


Asunto(s)
Especies Introducidas , Poecilia/fisiología , Reproducción/fisiología , Conducta Sexual Animal , Animales , Femenino , Masculino , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA