Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biol Chem ; 290(17): 11052-60, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25767116

RESUMEN

By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.


Asunto(s)
Bicarbonatos/toxicidad , Señalización del Calcio/efectos de los fármacos , Guanilato Ciclasa/metabolismo , Animales , Células COS , Catálisis , Bovinos , Chlorocebus aethiops , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanilato Ciclasa/genética , Estructura Terciaria de Proteína
2.
Front Mol Neurosci ; 16: 1125006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122625

RESUMEN

Rod photoreceptors in the retina adjust their responsiveness and sensitivity so that they can continue to provide meaningful information over a wide range of light intensities. By stimulating membrane guanylate cyclases in the outer segment to synthesize cGMP at a faster rate in a Ca2+-dependent fashion, bicarbonate increases the circulating "dark" current and accelerates flash response kinetics in amphibian rods. Compared to amphibian rods, mammalian rods are smaller in size, operate at a higher temperature, and express visual cascade proteins with somewhat different biochemical properties. Here, we evaluated the role of bicarbonate in rods of cpfl3 mice. These mice are deficient in their expression of functional cone transducin, Gnat2, making cones very insensitive to light, so the rod response to light could be observed in isolation in electroretinogram recordings. Bicarbonate increased the dark current and absolute sensitivity and quickened flash response recovery in mouse rods to a greater extent than in amphibian rods. In addition, bicarbonate enabled mouse rods to respond over a range that extended to dimmer flashes. Larger flash responses may have resulted in part from a bicarbonate-induced elevation in intracellular pH. However, high pH alone had little effect on flash response recovery kinetics and even suppressed the accelerating effect of bicarbonate, consistent with a direct, modulatory action of bicarbonate on Ca2+- dependent, membrane guanylate cyclase activity.

3.
Cell Physiol Biochem ; 29(3-4): 417-30, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22508049

RESUMEN

Rod outer segment membrane guanylate cyclase (ROS-GC1) is a bimodal Ca(2+) signal transduction switch. Lowering [Ca(2+)](i) from 200 to 20 nM progressively turns it "ON" as does raising [Ca(2+)](i) from 500 to 5000 nM. The mode operating at lower [Ca(2+)](i) plays a vital role in phototransduction in both rods and cones. The physiological function of the mode operating at elevated [Ca(2+)](i) is not known. Through comprehensive studies on mice involving gene deletions, biochemistry, immunohistochemistry, electroretinograms and single cell recordings, the present study demonstrates that the Ca(2+)-sensor S100B coexists with and is physiologically linked to ROS-GC1 in cones but not in rods. It up-regulates ROS-GC1 activity with a K(1/2) for Ca(2+) greater than 500 nM and modulates the transmission of neural signals to cone ON-bipolar cells. Furthermore, a possibility is raised that under pathological conditions where [Ca(2+)](i) levels rise to and perhaps even enter the micromolar range, the S100B signaling switch will be turned "ON" causing an explosive production of CNG channel opening and further rise in [Ca(2+)](i) in cone outer segments. The findings define a new cone-specific Ca(2+)-dependent feature of photoreceptors and expand our understanding of the operational principles of phototransduction machinery.


Asunto(s)
Calcio/metabolismo , Guanilato Ciclasa/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/enzimología , Segmento Externo de la Célula en Bastón/enzimología , Proteínas S100/metabolismo , Animales , GMP Cíclico/genética , GMP Cíclico/metabolismo , Activación Enzimática , Guanilato Ciclasa/genética , Inmunohistoquímica , Fototransducción , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Receptores de Superficie Celular/genética , Células Bipolares de la Retina/enzimología , Células Bipolares de la Retina/metabolismo , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/fisiología , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/genética , Membranas Sinápticas/enzimología , Membranas Sinápticas/metabolismo , Membranas Sinápticas/fisiología
4.
Front Mol Neurosci ; 15: 1050545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590910

RESUMEN

Accurate photon counting requires that rods generate highly amplified, reproducible single photon responses (SPRs). The SPR is generated within the rod outer segment (ROS), a multilayered structure built from membranous disks that house rhodopsin. Photoisomerization of rhodopsin at the disk rim causes a local depletion of cGMP that closes ion channels in the plasmalemma located nearby with relative rapidity. In contrast, a photoisomerization at the disk center, distant from the plasmalemma, has a delayed impact on the ion channels due to the time required for cGMP redistribution. Radial differences should be greatest in large diameter rods. By affecting membrane guanylate cyclase activity, bicarbonate could impact spatial inhomogeneity in cGMP content. It was previously known that in the absence of bicarbonate, SPRs are larger and faster at the base of a toad ROS (where the ROS attaches to the rest of the cell) than at the distal tip. Given that bicarbonate enters the ROS at the base and diffuses to the tip and that it expedites flash response recovery, there should be an axial concentration gradient for bicarbonate that would accentuate the base-to-tip SPR differences. Seeking to understand how ROS geometry and bicarbonate affect SPR variability, we used mathematical modeling and made electrophysiological recordings of single rods. Modeling predicted and our experiments confirmed minor radial SPR variability in large diameter, salamander rods that was essentially unchanged by bicarbonate. SPRs elicited at the base and tip of salamander rods were similar in the absence of bicarbonate, but when treated with 30 mM bicarbonate, SPRs at the base became slightly faster than those at the tip, verifying the existence of an axial gradient for bicarbonate. The differences were small and unlikely to undermine visual signaling. However, in toad rods with longer ROSs, bicarbonate somehow suppressed the substantial, axial SPR variability that is naturally present in the absence of bicarbonate. Modeling suggested that the axial gradient of bicarbonate might dampen the primary phototransduction cascade at the base of the ROS. This novel effect of bicarbonate solves a mystery as to how toad vision is able to function effectively in extremely dim light.

5.
Front Mol Neurosci ; 15: 1054449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710929

RESUMEN

Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.

6.
Vis Neurosci ; 28(6): 485-97, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22192505

RESUMEN

The visual pigment, rhodopsin, consists of opsin protein with 11-cis retinal chromophore, covalently bound. Light activates rhodopsin by isomerizing the chromophore to the all-trans conformation. The activated rhodopsin sets in motion a biochemical cascade that evokes an electrical response by the photoreceptor. All-trans retinal is eventually released from the opsin and reduced to vitamin A. Rod and cone photoreceptors contain vast amounts of rhodopsin, so after exposure to bright light, the concentration of vitamin A can reach relatively high levels within their outer segments. Since a retinal analog, ß-ionone, is capable of activating some types of visual pigments, we tested whether vitamin A might produce a similar effect. In single-cell recordings from isolated dark-adapted salamander green-sensitive rods, exogenously applied vitamin A decreased circulating current and flash sensitivity and accelerated flash response kinetics. These changes resembled those produced by exposure of rods to steady light. Microspectrophotometric measurements showed that vitamin A accumulated in the outer segments and binding of vitamin A to rhodopsin was confirmed in in vitro assays. In addition, vitamin A improved the sensitivity of photoreceptors to ultraviolet (UV) light. Apparently, the energy of a UV photon absorbed by vitamin A transferred by a radiationless process to the 11-cis retinal chromophore of rhodopsin, which subsequently isomerized. Therefore, our results suggest that vitamin A binds to rhodopsin at an allosteric binding site distinct from the chromophore binding pocket for 11-cis retinal to activate the rhodopsin, and that it serves as a sensitizing chromophore for UV light.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Rodopsina/metabolismo , Rayos Ultravioleta , Vitamina A/farmacología , Vitaminas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Técnicas In Vitro , Larva , Luz , Unión Proteica/efectos de la radiación , Retina/citología , Segmento Externo de la Célula en Bastón/efectos de los fármacos , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/efectos de la radiación , Urodelos
7.
PLoS One ; 16(10): e0258721, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34710119

RESUMEN

In daylight, cone photoreceptors in the retina are responsible for the bulk of visual perception, yet compared to rods, far less is known quantitatively about their biochemistry. This is partly because it is hard to isolate and purify cone proteins. The issue is also complicated by the synergistic interaction of these parameters in producing systems biology outputs, such as photoresponse. Using a 3-D resolved, finite element model of cone outer segments, here we conducted a study of parameter significance using global sensitivity analysis, by Sobol indices, which was contextualized within the uncertainty surrounding these parameters in the available literature. The analysis showed that a subset of the parameters influencing the circulating dark current, such as the turnover rate of cGMP in the dark, may be most influential for variance with experimental flash response, while the shut-off rates of photoexcited rhodopsin and phosphodiesterase also exerted sizable effect. The activation rate of transducin by rhodopsin and the light-induced hydrolysis rate of cGMP exerted measurable effects as well but were estimated as relatively less significant. The results of this study depend on experimental ranges currently described in the literature and should be revised as these become better established. To that end, these findings may be used to prioritize parameters for measurement in future investigations.


Asunto(s)
GMP Cíclico/metabolismo , Fototransducción , Luz , Células Fotorreceptoras Retinianas Conos/fisiología , Transducina/fisiología , Visión Ocular/fisiología , Animales , Ratones , Ratones Noqueados
8.
Biophys J ; 99(7): 2366-73, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20923672

RESUMEN

Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, ß-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more ß-ionones per rhodopsin. X-ray crystallography revealed binding of one ß-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of ß-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind ß-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but ß-ionone binds to the latter type of rhodopsin with low affinity and low efficacy.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinoides/metabolismo , Rodopsina/metabolismo , Animales , Bovinos , Cristalografía por Rayos X , Microespectrofotometría , Norisoprenoides/química , Norisoprenoides/metabolismo , Unión Proteica , Retinoides/química , Rodopsina/química , Segmento Externo de la Célula en Bastón/metabolismo , Urodelos/metabolismo
9.
PLoS One ; 15(10): e0240527, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052986

RESUMEN

Retinal rods function as accurate photon counters to provide for vision under very dim light. To do so, rods must generate highly amplified, reproducible responses to single photons, yet outer segment architecture and randomness in the location of rhodopsin photoisomerization on the surface of an internal disk introduce variability to the rising phase of the photon response. Soon after a photoisomerization at a disk rim, depletion of cGMP near the plasma membrane closes ion channels and hyperpolarizes the rod. But with a photoisomerization in the center of a disk, local depletion of cGMP is distant from the channels in the plasma membrane. Thus, channel closure is delayed by the time required for the reduction of cGMP concentration to reach the plasma membrane. Moreover, the local fall in cGMP dissipates over a larger volume before affecting the channels, so response amplitude is reduced. This source of variability increases with disk radius. Using a fully space-resolved biophysical model of rod phototransduction, we quantified the variability attributable to randomness in the location of photoisomerization as a function of disk structure. In mouse rods that have small disks bearing a single incisure, this variability was negligible in the absence of the incisure. Variability was increased slightly by the incisure, but randomness in the shutoff of rhodopsin emerged as the main source of single photon response variability at all but the earliest times. Variability arising from randomness in the transverse location of photoisomerization increased in magnitude and persisted over a longer period in the photon response of large salamander rods. A symmetric arrangement of multiple incisures in the disks of salamander rods greatly reduced this variability during the rising phase, but the incisures had the opposite effect on variability arising from randomness in rhodopsin shutoff at later times.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones/fisiología , Rodopsina/metabolismo , Visión Ocular/fisiología , Animales , Isomerismo , Ratones , Modelos Teóricos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Urodelos
10.
Biophys J ; 96(3): 939-50, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19186132

RESUMEN

Rhodopsins are densely packed in rod outer-segment membranes to maximize photon absorption, but this arrangement interferes with transducin activation by restricting the mobility of both proteins. We attempted to explore this phenomenon in transgenic mice that overexpressed rhodopsin in their rods. Photon capture was improved, and, for a given number of photoisomerizations, bright-flash responses rose more gradually with a reduction in amplification--but not because rhodopsins were more tightly packed in the membrane. Instead, rods increased their outer-segment diameters, accommodating the extra rhodopsins without changing the rhodopsin packing density. Because the expression of other phototransduction proteins did not increase, transducin and its effector phosphodiesterase were distributed over a larger surface area. That feature, as well as an increase in cytosolic volume, was responsible for delaying the onset of the photoresponse and for attenuating its amplification.


Asunto(s)
Luz , Células Fotorreceptoras Retinianas Bastones/química , Células Fotorreceptoras Retinianas Bastones/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Absorción , Animales , Bovinos , Membrana Celular/química , Membrana Celular/metabolismo , Ácidos Grasos/análisis , Expresión Génica , Ratones , Ratones Transgénicos , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Rodopsina/biosíntesis , Opsinas de Bastones/genética
11.
PLoS One ; 14(12): e0225948, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31805112

RESUMEN

The single photon response (SPR) in vertebrate photoreceptors is inherently variable due to several stochastic events in the phototransduction cascade, the main one being the shutoff of photoactivated rhodopsin. Deactivation is driven by a random number of steps, each of random duration with final quenching occurring after a random delay. Nevertheless, variability of the SPR is relatively low, making the signal highly reliable. Several biophysical and mathematical mechanisms contributing to variability suppression have been examined by the authors. Here we investigate the contribution of local depletion of cGMP by PDE*, the non linear dependence of the photocurrent on cGMP, Ca2+ feedback by making use of a fully space resolved (FSR) mathematical model, applied to two species (mouse and salamander), by varying the cGMP diffusion rate severalfold and rod outer segment diameter by an order of magnitude, and by introducing new, more refined, and time dependent variability functionals. Globally well stirred (GWS) models, and to a lesser extent transversally well stirred models (TWS), underestimate the role of nonlinearities and local cGMP depletion in quenching the variability of the circulating current with respect to fully space resolved models (FSR). These distortions minimize the true extent to which SPR is stabilized by locality in cGMP depletion, nonlinear effects linking cGMP to current, and Ca2+ feedback arising from the physical separation of E* from the ion channels located on the outer shell, and the diffusion of these second messengers in the cytoplasm.


Asunto(s)
Calcio/metabolismo , GMP Cíclico/metabolismo , Modelos Biológicos , Fotones , Células Fotorreceptoras Retinianas Bastones/fisiología , Transducción de Señal , Algoritmos , Animales , Biomarcadores , Ratones , Segmento Externo de la Célula en Bastón/fisiología
12.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783616

RESUMEN

The membrane guanylate cyclase, ROS-GC, that synthesizes cyclic GMP for use as a second messenger for visual transduction in retinal rods and cones, is stimulated by bicarbonate. Bicarbonate acts directly on ROS-GC1, because it enhanced the enzymatic activity of a purified, recombinant fragment of bovine ROS-GC1 consisting solely of the core catalytic domain. Moreover, recombinant ROS-GC1 proved to be a true sensor of bicarbonate, rather than a sensor for CO2. Access to bicarbonate differed in rods and cones of larval salamander, Ambystoma tigrinum, of unknown sex. In rods, bicarbonate entered at the synapse and diffused to the outer segment, where it was removed by Cl--dependent exchange. In contrast, cones generated bicarbonate internally from endogenous CO2 or from exogenous CO2 that was present in extracellular solutions of bicarbonate. Bicarbonate production from both sources of CO2 was blocked by the carbonic anhydrase inhibitor, acetazolamide. Carbonic anhydrase II expression was verified immunohistochemically in cones but not in rods. In addition, cones acquired bicarbonate at their outer segments as well as at their inner segments. The multiple pathways for access in cones may support greater uptake of bicarbonate than in rods and buffer changes in its intracellular concentration.


Asunto(s)
Bicarbonatos/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Visión Ocular/fisiología , Acetazolamida/farmacología , Ambystoma , Animales , Células COS , Dióxido de Carbono/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Bovinos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , GMP Cíclico/metabolismo , Expresión Génica , Guanilato Ciclasa/genética , Ratones , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Visión Ocular/efectos de los fármacos
13.
Mol Cell Biol ; 25(10): 4129-37, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15870283

RESUMEN

The striated ciliary rootlet is a prominent cytoskeleton originating from basal bodies of ciliated cells. Although a familiar structure in cell biology, its function has remained unresolved. In this study, we carried out targeted disruption in mice of the gene for rootletin, a component of the rootlet. In the mutant, ciliated cells are devoid of rootlets. Phototransduction and ciliary beating in sensory and motile cilia initially exhibit no apparent functional deficits. However, photoreceptors degenerate over time, and mutant lungs appear prone to pathological changes consistent with insufficient mucociliary clearance. Further analyses revealed a striking fragility at the ciliary base in photoreceptors lacking rootlets. In vitro assays suggest that the rootlet is among the least dynamic of all cytoskeletons and interacts with actin filaments. Thus, a primary function of the rootlet is to provide structural support for the cilium. Inasmuch as photoreceptors elaborate an exceptionally enlarged sensory cilium, they are especially dependent on the rootlet for structural integrity and long-term survival.


Asunto(s)
Cilios/fisiología , Citoesqueleto/fisiología , Animales , Centriolos/fisiología , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Cinética , Linfocitos/citología , Linfocitos/inmunología , Ratones , Mutación/genética , Orgánulos/fisiología , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/fisiología , Degeneración Retiniana , Factores de Tiempo
15.
Methods Mol Biol ; 1753: 129-158, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29564786

RESUMEN

Our ability to see is based on the activity of retinal rod and cone photoreceptors. Rods function when there is very little light, while cones operate at higher light levels. Photon absorption by rhodopsin activates a biochemical cascade that converts photic energy into a change in the membrane potential of the cell by decreasing the levels of a second messenger, cGMP, that control the gating of cation channels. But just as important as the activation of the cascade are the shut-off and recovery processes. The timing of shutoff and recovery ultimately affects sensitivity, temporal resolution and even the capacity for counting single photons. An important part of the recovery is restoration of cGMP through the action of rod outer segment membrane guanylate cyclases (ROS-GCs) and guanylate cyclase-activating proteins (GCAPs). In darkness, ROS-GCs catalyze the conversion of GTP to cGMP at a low rate, due to inhibition of cyclase activity by GCAPs. In the light, GCAP enhances ROS-GC activity. Mutations in the ROS-GC system can cause problems in vision, and even result in blindness due to photoreceptor death. The mouse has emerged as a particularly useful subject to study the role of ROS-GC because the technology for the manipulation of their genetics is advanced, making production of mice with targeted mutations much easier. Here we describe some experimental procedures for studying the retinal rods of wild-type and genetically engineered mice: biochemical assays of ROS-GC activity, immunohistochemistry, and single cell recording.


Asunto(s)
Calcio/metabolismo , Guanilato Ciclasa/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Cationes Bivalentes/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Electrodos , Pruebas de Enzimas/instrumentación , Pruebas de Enzimas/métodos , Femenino , Guanilato Ciclasa/genética , Guanilato Ciclasa/aislamiento & purificación , Radioisótopos de Yodo/química , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Modelos Animales , Mutagénesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Visión Ocular/fisiología
17.
J Gen Physiol ; 128(4): 473-85, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17001087

RESUMEN

In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.


Asunto(s)
Canales Iónicos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Retinoides/farmacología , 1-Metil-3-Isobutilxantina/farmacología , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Ambystoma , Animales , GMP Cíclico/biosíntesis , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Diterpenos , Guanilato Ciclasa/metabolismo , Canales Iónicos/antagonistas & inhibidores , Luz , Microespectrofotometría , Técnicas de Placa-Clamp , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Retinaldehído/metabolismo , Retinaldehído/farmacología , Retinoides/metabolismo , Proteínas de Unión al Retinol/farmacología , Proteínas Plasmáticas de Unión al Retinol , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Vitamina A/farmacología
18.
Curr Opin Neurobiol ; 13(4): 404-12, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12965286

RESUMEN

Transgenic mice bearing null or functional mutations are being used to define the roles of specific elements in phototransduction and also to time the molecular interactions. Genetic manipulation of the collision frequency between rhodopsin and transducin molecules identified this parameter as rate-limiting for the photoresponse onset. Genetic interference with rhodopsin phosphorylation and arrestin binding, transducin shut-off and calcium feedback has revealed their respective roles in shaping the response waveform. The timetable for all of these molecular events determines the amplitude, kinetics and reproducibility of the photoresponse.


Asunto(s)
Animales Modificados Genéticamente/fisiología , Visión Ocular/fisiología , Secuencia de Aminoácidos/fisiología , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Datos de Secuencia Molecular , Rodopsina/fisiología , Factores de Tiempo
19.
Invest Ophthalmol Vis Sci ; 47(5): 2185-94, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16639031

RESUMEN

PURPOSE: To investigate the impact of aryl hydrocarbon receptor-interacting protein-like (AIPL)-1 on photoreception in rods. METHODS: Photoresponses of mouse rods expressing lowered amounts of AIPL1 were studied by single-cell and electroretinogram (ERG) recordings. Phototransduction protein levels and enzymatic activities were determined in biochemical assays. Ca2+ dynamics were probed with a fluorescent dye. Comparisons were made to rods expressing mutant Y99C guanylate cyclase activating protein (GCAP)-1, to understand which effects arose from elevated dark levels of cGMP and Ca2+. RESULTS: Except for PDE, transduction protein levels were normal in low-AIPL1 retinas, as were guanylate cyclase (GC), rhodopsin kinase (RK), and normalized phosphodiesterase (PDE) activities. Y99C and low-AIPL1 rods were more sensitive to flashes than normal, but flash responses of low-AIPL1 rods showed an abnormal delay, reduced rate of increase, and longer recovery not present in Y99C rod responses. In addition, low-AIPL1 rods but not Y99C rods failed to reach the normal light-induced minimum in Ca2+ concentration. CONCLUSIONS: Reduced AIPL1 delayed the photoresponse, decreased its amplification constant, slowed a rate-limiting step in its recovery, and limited the light-induced decrease in Ca2+. Not all changes were attributable to decreased PDE or to elevated cGMP and Ca2+ in darkness. Therefore, AIPL1 directly or indirectly affects more than one component of phototransduction.


Asunto(s)
Proteínas Portadoras/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Visión Ocular/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Calcio/metabolismo , Cromatografía de Gases , GMP Cíclico/metabolismo , Electrorretinografía , Ácidos Grasos/metabolismo , Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Guanilato Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Ratones , Ratones Transgénicos , Hidrolasas Diéster Fosfóricas/metabolismo , Estimulación Luminosa , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Transducina/metabolismo
20.
Front Mol Neurosci ; 9: 83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695398

RESUMEN

This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA