Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 12(8): e1006154, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27500738

RESUMEN

Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes.


Asunto(s)
Acil-CoA Deshidrogenasa/genética , Proteínas de Drosophila/genética , Metabolismo de los Lípidos/genética , Oxidorreductasas/genética , Fosfatidilinositol 3-Quinasas/genética , Acil-CoA Deshidrogenasa/metabolismo , Animales , Proliferación Celular/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Larva/genética , Larva/metabolismo , Gotas Lipídicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Triglicéridos/metabolismo
2.
Annu Rev Entomol ; 59: 405-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24397521

RESUMEN

Oenocytes have intrigued insect physiologists since the nineteenth century. Many years of careful but mostly descriptive research on these cells highlights their diverse sizes, numbers, and anatomical distributions across Insecta. Contemporary molecular genetic studies in Drosophila melanogaster and Tribolium castaneum support the hypothesis that oenocytes are of ectodermal origin. They also suggest that, in both short and long germ-band species, oenocytes are induced from a Spalt major/Engrailed ectodermal zone by MAPK signaling. Recent glimpses into some of the physiological functions of oenocytes indicate that they involve fatty acid and hydrocarbon metabolism. Genetic studies in D. melanogaster have shown that larval oenocytes synthesize very-long-chain fatty acids required for tracheal waterproofing and that adult oenocytes produce cuticular hydrocarbons required for desiccation resistance and pheromonal communication. Exciting areas of future research include the evolution of oenocytes and their cross talk with other tissues involved in lipid metabolism such as the fat body.


Asunto(s)
Insectos/citología , Insectos/crecimiento & desarrollo , Animales , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ectodermo/citología , Ectodermo/embriología , Ectodermo/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Insectos/embriología , Insectos/genética , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Tribolium/citología , Tribolium/embriología , Tribolium/genética , Tribolium/crecimiento & desarrollo
3.
PLoS Biol ; 8(8): e1000441, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20689801

RESUMEN

The posterior signalling centre (PSC), a small group of specialised cells, controls hemocyte (blood cell) homeostasis in the Drosophila larval hematopoietic organ, the lymph gland. This role of the PSC is very reminiscent of the "niche," the micro-environment of hematopoietic stem cells in vertebrates. We have recently shown that the PSC acts in a non-cell-autonomous manner to maintain janus tyrosine kinase/signal transducers and activators of transcription (JAK/STAT) signalling in hematopoietic progenitors (prohemocytes), thereby preserving the multipotent character necessary for their differentiation into lamellocytes, a cryptic and dedicated immune cell type required to fight specific immune threats such as wasp parasitism. In this report, on the basis of a knock out generated by homologous recombination, we show that a short type I cytokine-related receptor CG14225/Latran is required for switching off JAK/STAT signalling in prohemocytes. This is a prerequisite to massive differentiation of lamellocytes upon wasp parasitisation. In vivo and cell culture assays indicate that Latran forms heteromers with Domeless, the Drosophila type I cytokine signalling receptor related to mammalian GP130, and antagonises Domeless activity in a dose-dependent manner. Our analysis further shows that a primary immune response to wasp parasitism is a strong decrease in cytokine mRNA levels in the lymph gland, followed by an increase in the latran/domeless ratio. We propose that this sequence of events culminates in the complete inhibition of residual JAK/STAT signalling by Latran. JAK/STAT activity has been associated with several human diseases including leukaemia while knock-out studies in mice point to a central role of this pathway in hematopoiesis and regulation of immune functions. The specific function of Drosophila Latran is, to our knowledge, the first in vivo example of a role for a nonsignalling receptor in controlling a dedicated immune response, and thus raises the question of whether short, nonsignalling receptors also control specific aspects of vertebrate cellular immunity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Hemocitos/inmunología , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Animales , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hemocitos/metabolismo , Homeostasis , Inmunidad Celular , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Avispas/fisiología
4.
Nature ; 446(7133): 325-8, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17361184

RESUMEN

Drosophila haemocytes (blood cells) originate from a specialized haematopoietic organ-the lymph gland. Larval haematopoietic progenitors (prohaemocytes) give rise to three types of circulating haemocytes: plasmatocytes, crystal cells and lamellocytes. Lamellocytes, which are devoted to encapsulation of large foreign bodies, only differentiate in response to specific immune threats, such as parasitization by wasps. Here we show that a small cluster of signalling cells, termed the PSC (posterior signalling centre), controls the balance between multipotent prohaemocytes and differentiating haemocytes, and is necessary for the massive differentiation of lamellocytes that follows parasitization. Communication between the PSC and haematopoietic progenitors strictly depends on the PSC-restricted expression of Collier, the Drosophila orthologue of mammalian early B-cell factor. PSC cells act, in a non-cell-autonomous manner, to maintain JAK/STAT signalling activity in prohaemocytes, preventing their premature differentiation. Serrate-mediated Notch signalling from the PSC is required to maintain normal levels of col transcription. The key role of the PSC in controlling blood cell homeostasis is reminiscent of interactions between haematopoietic progenitors and their micro-environment in vertebrates, thus further highlighting the interest of Drosophila as a model system for studying the evolution of haematopoiesis and cellular innate immunity.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Hemocitos/citología , Hemocitos/metabolismo , Homeostasis , Transducción de Señal , Animales , Diferenciación Celular , Drosophila melanogaster/parasitología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Quinasas Janus/metabolismo , Larva/citología , Larva/metabolismo , Larva/parasitología , Sistema Linfático/citología , Sistema Linfático/metabolismo , Factores de Transcripción STAT/metabolismo , Avispas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA