Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 187: 116384, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32980605

RESUMEN

Reliable data on the economic feasibility of small-scale rural water supply systems are insufficient, which hampers the allocation of funds to construct them, even as the need for their construction increases. To address this gap, three newly constructed water supply systems with water points in Nepal, Egypt, and Tanzania were accompanied by the authors throughout the planning and implementation phases and up to several years of operation. This study presents an analysis of their economic feasibility and suggests important factors for successful water supply system implementation at other rural locations. The initial investment for construction of the new water supply systems ranged from 23,600 € to 44,000 €, and operation and maintenance costs ranged from 547 € to 1921 € per year. The water price and actual multi-year average quantity of tapped water at each site were 7.7 €/m³ & 0.67 m³/d in Nepal, 0.7 €/m³ & 0.88 m³/d in Egypt and 0.9 €/m³ & 8.65 m³/d in Tanzania. Although the new water supply systems enjoyed acceptance among the consumers, the actual average water quantity tapped ranged from just 17 to 30 % of the demand for which the new supply systems were designed. While two of three sites successfully yielded a cash surplus through the sale of water, sufficient for operation, maintenance and basic repairs, no site showed a realistic chance of recovering the initial investment (reaching the break-even point) within the projected lifetime of the technical infrastructure. Reaching the break-even point within 5 years, which would be necessary to attract private investors, would require an unrealistic increase of the water price or the water consumption by factors ranging from 5.2 to 9.0. The economic viability of such systems therefore depends strongly on the quantity of water consumed and the water price, as well as the availability of funding from governments, NGOs or other sponsors not primarily interested in a financial return on their investment.


Asunto(s)
Halogenación , Agua , Análisis Costo-Beneficio , Egipto , Humanos , Nepal , Tanzanía , Abastecimiento de Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-28974053

RESUMEN

Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.


Asunto(s)
Arsénico/química , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/química , Compuestos de Amonio/química , Bangladesh , Precipitación Química , Cloruros/química , Cloro/química , Electrólisis , Filtración , Agua Subterránea/química , Hidróxidos/química , India , Hierro/química , Manganeso/química , Fosfatos/química , Energía Solar , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA