Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine ; 11(5): 1189-99, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25659645

RESUMEN

Nanoparticles are extensively studied for drug delivery and are proving to be effective in drug delivery and the diagnostic field. Drug delivery to lungs has its advantages over other routes of administration. Inhalable powders consisting of nanoparticles are gaining much interest in respiratory research and clinical therapy. Particle engineering technique is a key factor to develop inhalable formulations that can successfully deliver drug with improved therapeutic effect and enhanced targeting. Inhalable nanoparticles in the solid-state dry powders for targeted pulmonary delivery offer unique advantages and are an exciting new area of research. Nasal delivery of inhalable nanoparticulate powders is gaining research attention recently, particularly in vaccine applications, systemic drug delivery in the treatment of pain, and non-invasive brain targeting. Fundamental aspects and recent advancements along with future prospects of inhalable powders consisting of nanoparticles in the solid-state for respiratory delivery are presented. FROM THE CLINICAL EDITOR: The advance in nanotechnology has enabled the design of new drug delivery systems through inhalation, which has many advantages over traditional delivery systems. This comprehensive review describes and discusses the current status, drug design and modification for targeted delivery and challenges of the use of nanoparticles in the respiratory tract.


Asunto(s)
Inhaladores de Polvo Seco/métodos , Nanopartículas/administración & dosificación , Administración por Inhalación , Administración Intranasal , Aerosoles , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Inhaladores de Polvo Seco/instrumentación , Humanos , Liposomas/administración & dosificación , Liposomas/química , Pulmón/metabolismo , Nanopartículas/química , Polímeros/administración & dosificación , Polímeros/química , Polvos/administración & dosificación , Polvos/química
2.
RSC Adv ; 10(68): 41846-41856, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33391731

RESUMEN

Rationale: lactose is the only FDA-approved carrier for dry powder inhaler (DPI) formulations in the US. Lactose carrier-based DPI products are contraindicated in patients with a known lactose allergy. Hence, inhaler formulations without lactose will benefit lactose allergic asthmatics. Objectives: to rationally design and develop lactose carrier-free dry powder inhaler formulations of fluticasone propionate and salmeterol xinafoate that will benefit people with known lactose allergy. The study also aims at improving the aerosol deposition of the dry powder formulation through advanced particle engineering design technologies to create inhalable powders consisting of nanoparticles/microparticles. Methods: advanced DPI nanoparticle/microparticle formulations were designed, developed and optimized using organic solution advanced closed-mode spray drying. The co-spray dried (co-SD) powders were comprehensively characterized in solid-state and in vitro comparative analysis of the aerodynamic performance of these molecularly mixed formulations was conducted with the marketed formulation of Advair® Diskus® interactive physical mixture. Measurements and main results: comprehensive solid-state physicochemical characterization of the powders showed that the engineered co-SD particles were small and spherical within the size range of 450 nm to 7.25 µm. Improved fine particle fraction and lower mass median aerodynamic diameter were achieved by these DPI nanoparticles/microparticles. Conclusions: this study has successfully produced a lactose-free dry powder formulation containing fluticasone propionate and salmeterol xinafoate with mannitol as excipient engineered as inhalable DPI nanoparticles/microparticles by advanced spray drying. Further, co-spray drying with mannitol and using Handihaler® device can generate higher fine particle mass of fluticasone/salmeterol. Mannitol, a mucolytic agent and aerosol performance enhancer, is a suitable excipient that can enhance aerosol dispersion of DPIs.

3.
Pharmaceutics ; 6(2): 333-53, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24955820

RESUMEN

Nanomedicine is making groundbreaking achievements in drug delivery. The versatility of nanoparticles has given rise to its use in respiratory delivery that includes inhalation aerosol delivery by the nasal route and the pulmonary route. Due to the unique features of the respiratory route, research in exploring the respiratory route for delivery of poorly absorbed and systemically unstable drugs has been increasing. The respiratory route has been successfully used for the delivery of macromolecules like proteins, peptides, and vaccines, and continues to be examined for use with small molecules, DNA, siRNA, and gene therapy. Phospholipid nanocarriers are an attractive drug delivery system for inhalation aerosol delivery in particular. Protecting these phospholipid nanocarriers from pulmonary immune system attack by surface modification by polyethylene glycol (PEG)ylation, enhancing mucopenetration by PEGylation, and sustaining drug release for controlled drug delivery are some of the advantages of PEGylated liposomal and proliposomal inhalation aerosol delivery. This review discusses the advantages of using PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery through the nasal and pulmonary routes as inhalation aerosols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA