Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876749

RESUMEN

Most genes associated with acute myeloid leukemia (AML) are mutated in less than 10% of patients, suggesting that alternative mechanisms of gene disruption contribute to this disease. Here, we find a set of splicing events that alter the expression of a subset of AML-associated genes independent of known somatic mutations. In particular, aberrant splicing triples the number of patients with reduced functional EZH2 compared with that predicted by somatic mutation alone. In addition, we unexpectedly find that the nonsense-mediated decay factor DHX34 exhibits widespread alternative splicing in sporadic AML, resulting in a premature stop codon that phenocopies the loss-of-function germline mutations observed in familial AML. Together, these results demonstrate that classical mutation analysis underestimates the burden of functional gene disruption in AML and highlight the importance of assessing the contribution of alternative splicing to gene dysregulation in human disease.


Asunto(s)
Empalme Alternativo , Leucemia Mieloide Aguda/genética , Mutación , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Genotipo , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas/genética , ARN Helicasas/metabolismo
2.
Genes Dev ; 29(19): 2054-66, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26443849

RESUMEN

Alternative splicing is prevalent among genes encoding signaling molecules; however, the functional consequence of differential isoform expression remains largely unknown. Here we demonstrate that, in response to T-cell activation, the Jun kinase (JNK) kinase MAP kinase kinase 7 (MKK7) is alternatively spliced to favor an isoform that lacks exon 2. This isoform restores a JNK-docking site within MKK7 that is disrupted in the larger isoform. Consistently, we show that skipping of MKK7 exon 2 enhances JNK pathway activity, as indicated by c-Jun phosphorylation and up-regulation of TNF-α. Moreover, this splicing event is itself dependent on JNK signaling. Thus, MKK7 alternative splicing represents a positive feedback loop through which JNK promotes its own signaling. We further show that repression of MKK7 exon 2 is dependent on the presence of flanking sequences and the JNK-induced expression of the RNA-binding protein CELF2, which binds to these regulatory elements. Finally, we found that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. Strikingly, these JNK-dependent events are also significantly enriched for responsiveness to CELF2. Together, our data demonstrate a widespread role for the JNK-CELF2 axis in controlling splicing during T-cell activation, including a specific role in propagating JNK signaling.


Asunto(s)
Empalme Alternativo/genética , Proteínas CELF/metabolismo , Regulación de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 7/genética , Proteínas del Tejido Nervioso/metabolismo , Linfocitos T/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Retroalimentación Fisiológica/fisiología , Humanos , Células Jurkat , MAP Quinasa Quinasa 7/metabolismo , Estabilidad del ARN/genética , Transducción de Señal/genética , Linfocitos T/citología
3.
Nucleic Acids Res ; 48(10): 5710-5719, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32338744

RESUMEN

RNA binding proteins (RBPs) frequently regulate the expression of other RBPs in mammalian cells. Such cross-regulation has been proposed to be important to control networks of coordinated gene expression; however, much remains to be understood about how such networks of cross-regulation are established and what the functional consequence is of coordinated or reciprocal expression of RBPs. Here we demonstrate that the RBPs CELF2 and hnRNP C regulate the expression of each other, such that depletion of one results in reduced expression of the other. Specifically, we show that loss of hnRNP C reduces the transcription of CELF2 mRNA, while loss of CELF2 results in decreased efficiency of hnRNP C translation. We further demonstrate that this reciprocal regulation serves to fine tune the splicing patterns of many downstream target genes. Together, this work reveals new activities of hnRNP C and CELF2, provides insight into a previously unrecognized gene regulatory network, and demonstrates how cross-regulation of RBPs functions to shape the cellular transcriptome.


Asunto(s)
Proteínas CELF/metabolismo , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Biosíntesis de Proteínas , Empalme del ARN , Transcripción Genética , Proteínas CELF/biosíntesis , Proteínas CELF/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/biosíntesis , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Humanos , Células Jurkat , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Linfocitos T/metabolismo
4.
Genome Res ; 27(8): 1360-1370, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28512194

RESUMEN

Over 95% of human multi-exon genes undergo alternative splicing, a process important in normal development and often dysregulated in disease. We sought to analyze the global splicing regulatory network of CELF2 in human T cells, a well-studied splicing regulator critical to T cell development and function. By integrating high-throughput sequencing data for binding and splicing quantification with sequence features and probabilistic splicing code models, we find evidence of splicing antagonism between CELF2 and the RBFOX family of splicing factors. We validate this functional antagonism through knockdown and overexpression experiments in human cells and find CELF2 represses RBFOX2 mRNA and protein levels. Because both families of proteins have been implicated in the development and maintenance of neuronal, muscle, and heart tissues, we analyzed publicly available data in these systems. Our analysis suggests global, antagonistic coregulation of splicing by the CELF and RBFOX proteins in mouse muscle and heart in several physiologically relevant targets, including proteins involved in calcium signaling and members of the MEF2 family of transcription factors. Importantly, a number of these coregulated events are aberrantly spliced in mouse models and human patients with diseases that affect these tissues, including heart failure, diabetes, or myotonic dystrophy. Finally, analysis of exons regulated by ancient CELF family homologs in chicken, Drosophila, and Caenorhabditis elegans suggests this antagonism is conserved throughout evolution.


Asunto(s)
Proteínas CELF/genética , Diabetes Mellitus Tipo 1/patología , Distrofia Miotónica/patología , Factores de Empalme de ARN/genética , Empalme Alternativo , Animales , Proteínas CELF/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Corazón/fisiología , Humanos , Células Jurkat , Ratones , Músculos/citología , Músculos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Factores de Empalme de ARN/metabolismo
5.
J Biol Chem ; 292(44): 18240-18255, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28916722

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3-dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3-dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3-dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3ß phosphorylated these proteins in vitro RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3-dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Empalme Alternativo , Animales , Isótopos de Carbono , Línea Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Técnicas de Inactivación de Genes , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas de Homeodominio/química , Ratones , Isótopos de Nitrógeno , Proteínas Nucleares/química , Nucleofosmina , Mapeo Peptídico , Fosforilación , Estabilidad Proteica , Proteómica/métodos , Proteínas de Unión al ARN/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras , Factores de Empalme Serina-Arginina/química , Especificidad por Sustrato
6.
Proc Natl Acad Sci U S A ; 112(17): E2139-48, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870297

RESUMEN

Studies in several cell types have highlighted dramatic and diverse changes in mRNA processing that occur upon cellular stimulation. However, the mechanisms and pathways that lead to regulated changes in mRNA processing remain poorly understood. Here we demonstrate that expression of the splicing factor CELF2 (CUGBP, Elav-like family member 2) is regulated in response to T-cell signaling through combined increases in transcription and mRNA stability. Transcriptional induction occurs within 6 h of stimulation and is dependent on activation of NF-κB. Subsequently, there is an increase in the stability of the CELF2 mRNA that correlates with a change in CELF2 3'UTR length and contributes to the total signal-induced enhancement of CELF2 expression. Importantly, we uncover dozens of splicing events in cultured T cells whose changes upon stimulation are dependent on CELF2 expression, and provide evidence that CELF2 controls a similar proportion of splicing events during human thymic T-cell development. Taken together, these findings expand the physiologic impact of CELF2 beyond that previously documented in developing neuronal and muscle cells to T-cell development and function, identify unappreciated instances of alternative splicing in the human thymus, and uncover novel mechanisms for CELF2 regulation that may broadly impact CELF2 expression across diverse cell types.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Empalme Alternativo/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/biosíntesis , Transducción de Señal/fisiología , Linfocitos T/metabolismo , Proteínas CELF , Humanos , Células Jurkat , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Linfocitos T/citología
7.
RNA ; 21(12): 2053-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26437669

RESUMEN

HnRNP L is a ubiquitous splicing-regulatory protein that is critical for the development and function of mammalian T cells. Previous work has identified a few targets of hnRNP L-dependent alternative splicing in T cells and has described transcriptome-wide association of hnRNP L with RNA. However, a comprehensive analysis of the impact of hnRNP L on mRNA expression remains lacking. Here we use next-generation sequencing to identify transcriptome changes upon depletion of hnRNP L in a model T-cell line. We demonstrate that hnRNP L primarily regulates cassette-type alternative splicing, with minimal impact of hnRNP L depletion on transcript abundance, intron retention, or other modes of alternative splicing. Strikingly, we find that binding of hnRNP L within or flanking an exon largely correlates with exon repression by hnRNP L. In contrast, exons that are enhanced by hnRNP L generally lack proximal hnRNP L binding. Notably, these hnRNP L-enhanced exons share sequence and context features that correlate with poor nucleosome positioning, suggesting that hnRNP may enhance inclusion of a subset of exons via a cotranscriptional or epigenetic mechanism. Our data demonstrate that hnRNP L controls inclusion of a broad spectrum of alternative cassette exons in T cells and suggest both direct RNA regulation as well as indirect mechanisms sensitive to the epigenetic landscape.


Asunto(s)
Epigénesis Genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/fisiología , Empalme Alternativo , Exones , Humanos , Células Jurkat , Nucleosomas/metabolismo , ARN Mensajero/genética , Transcriptoma
8.
Nucleic Acids Res ; 43(18): 9006-16, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26261210

RESUMEN

PSF (a.k.a. SFPQ) is a ubiquitously expressed, essential nuclear protein with important roles in DNA damage repair and RNA biogenesis. In stimulated T cells, PSF binds to and suppresses the inclusion of CD45 exon 4 in the final mRNA; however, in resting cells, TRAP150 binds PSF and prevents access to the CD45 RNA, though the mechanism for this inhibition has remained unclear. Here, we show that TRAP150 binds a region encompassing the RNA recognition motifs (RRMs) of PSF using a previously uncharacterized, 70 residue region we have termed the PSF-interacting domain (PID). TRAP150's PID directly inhibits the interaction of PSF RRMs with RNA, which is mediated through RRM2. However, interaction of PSF with TRAP150 does not appear to inhibit the dimerization of PSF with other Drosophila Behavior, Human Splicing (DBHS) proteins, which is also dependent on RRM2. Finally, we use RASL-Seq to identify ∼40 T cell splicing events sensitive to PSF knockdown, and show that for the majority of these, PSF's effect is antagonized by TRAP150. Together these data suggest a model in which TRAP150 interacts with dimeric PSF to block access of RNA to RRM2, thereby regulating the activity of PSF toward a broad set of splicing events in T cells.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Proteínas de Unión al ADN/química , Factor de Empalme Asociado a PTB , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Linfocitos T , Factores de Transcripción/química
9.
Nat Chem Biol ; 10(3): 196-202, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24413462

RESUMEN

Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.


Asunto(s)
Factores de Transcripción Activadores/efectos de la radiación , Proteínas Bacterianas/genética , Expresión Génica/genética , Luz , Optogenética , Animales , Línea Celular , Cinética , Modelos Biológicos , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Linfocitos T/metabolismo , Pez Cebra/genética
10.
RNA Biol ; 13(6): 569-81, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27096301

RESUMEN

CELF2 is an RNA binding protein that has been implicated in developmental and signal-dependent splicing in the heart, brain and T cells. In the heart, CELF2 expression decreases during development, while in T cells CELF2 expression increases both during development and in response to antigen-induced signaling events. Although hundreds of CELF2-responsive splicing events have been identified in both heart and T cells, the way in which CELF2 functions has not been broadly investigated. Here we use CLIP-Seq to identified physical targets of CELF2 in a cultured human T cell line. By comparing the results with known functional targets of CELF2 splicing regulation from the same cell line we demonstrate a generalizable position-dependence of CELF2 activity that is consistent with previous mechanistic studies of individual CELF2 target genes in heart and brain. Strikingly, this general position-dependence is sufficient to explain the bi-directional activity of CELF2 on 2 T cell targets recently reported. Therefore, we propose that the location of CELF2 binding around an exon is a primary predictor of CELF2 function in a broad range of cellular contexts.


Asunto(s)
Proteínas CELF/metabolismo , Proteínas del Tejido Nervioso/metabolismo , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Linfocitos T/metabolismo , Empalme Alternativo , Encéfalo/metabolismo , Células Cultivadas , Exones , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Jurkat , Miocardio/metabolismo , Empalme del ARN , Transducción de Señal
11.
J Cell Sci ; 125(Pt 4): 1015-26, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22421358

RESUMEN

The yeast cyclin-C-Cdk8p kinase complex represses the transcription of a subset of genes involved in the stress response. To relieve this repression, cyclin C is destroyed in cells exposed to H(2)O(2) by the 26S proteasome. This report identifies Not4p as the ubiquitin ligase mediating H(2)O(2)-induced cyclin C destruction. Not4p is required for H(2)O(2)-induced cyclin C destruction in vivo and polyubiquitylates cyclin C in vitro by utilizing Lys48, a ubiquitin linkage associated with directing substrates to the 26S proteasome. Before its degradation, cyclin C, but not Cdk8p, translocates from the nucleus to the cytoplasm. This translocation requires both the cell-wall-integrity MAPK module and phospholipase C, and these signaling pathways are also required for cyclin C destruction. In addition, blocking cytoplasmic translocation slows the mRNA induction kinetics of two stress response genes repressed by cyclin C. Finally, a cyclin C derivative restricted to the cytoplasm is still subject to Not4p-dependent destruction, indicating that the degradation signal does not occur in the nucleus. These results identify a stress-induced proteolytic pathway regulating cyclin C that requires nuclear to cytoplasmic relocalization and Not4p-mediated ubiquitylation.


Asunto(s)
Núcleo Celular/metabolismo , Ciclina C/metabolismo , Citoplasma/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Pared Celular/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Citoplasma/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/genética , Transporte de Proteínas/efectos de los fármacos , Proteolisis , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/metabolismo , Ubiquitinación
12.
Cell Rep ; 42(3): 112273, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36933216

RESUMEN

Chromatin regulation and alternative splicing are both critical mechanisms guiding gene expression. Studies have demonstrated that histone modifications can influence alternative splicing decisions, but less is known about how alternative splicing may impact chromatin. Here, we demonstrate that several genes encoding histone-modifying enzymes are alternatively spliced downstream of T cell signaling pathways, including HDAC7, a gene previously implicated in controlling gene expression and differentiation in T cells. Using CRISPR-Cas9 gene editing and cDNA expression, we show that differential inclusion of HDAC7 exon 9 controls the interaction of HDAC7 with protein chaperones, resulting in changes to histone modifications and gene expression. Notably, the long isoform, which is induced by the RNA-binding protein CELF2, promotes expression of several critical T cell surface proteins including CD3, CD28, and CD69. Thus, we demonstrate that alternative splicing of HDAC7 has a global impact on histone modification and gene expression that contributes to T cell development.


Asunto(s)
Código de Histonas , Histonas , Proteínas 14-3-3/genética , Empalme Alternativo/genética , Cromatina , Expresión Génica , Histona Desacetilasas/metabolismo
13.
J Biol Chem ; 286(22): 20043-53, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21507955

RESUMEN

Alternative splicing is typically controlled by complexes of regulatory proteins that bind to sequences within or flanking variable exons. The identification of regulatory sequence motifs and the characterization of sequence motifs bound by splicing regulatory proteins have been essential to predicting splicing regulation. The activation-responsive sequence (ARS) motif has previously been identified in several exons that undergo changes in splicing upon T cell activation. hnRNP L binds to this ARS motif and regulates ARS-containing exons; however, hnRNP L does not function alone. Interestingly, the proteins that bind together with hnRNP L differ for different exons that contain the ARS core motif. Here we undertake a systematic mutational analysis of the best characterized context of the ARS motif, namely the ESS1 sequence from CD45 exon 4, to understand the determinants of binding specificity among the components of the ESS1 regulatory complex and the relationship between protein binding and function. We demonstrate that different mutations within the ARS motif affect specific aspects of regulatory function and disrupt the binding of distinct proteins. Most notably, we demonstrate that the C77G polymorphism, which correlates with autoimmune disease susceptibility in humans, disrupts exon silencing by preventing the redundant activity of hnRNPs K and E2 to compensate for the weakened function of hnRNP L. Therefore, these studies provide an important example of the functional relevance of combinatorial function in splicing regulation and suggest that additional polymorphisms may similarly disrupt function of the ESS1 silencer.


Asunto(s)
Empalme Alternativo/genética , Enfermedades Autoinmunes , Enfermedades Genéticas Congénitas , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Antígenos Comunes de Leucocito , Polimorfismo de Nucleótido Simple , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Línea Celular , Exones/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Antígenos Comunes de Leucocito/biosíntesis , Antígenos Comunes de Leucocito/genética , Activación de Linfocitos/genética , Mutación , Elementos Silenciadores Transcripcionales/genética , Linfocitos T/metabolismo
14.
FEMS Yeast Res ; 11(1): 104-13, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21059190

RESUMEN

Ume6p is a nonessential transcription factor that represses meiotic gene expression during vegetative growth in budding yeast. To relieve this repression, Ume6p is destroyed as cells enter meiosis and is not resynthesized until spore wall assembly. The present study reveals that spores derived from a ume6 null homozygous diploid fail to germinate. In addition, mutant spores from a UME6/ume6 heterozygote exhibited reduced germination efficiency compared with their wild-type sister spores. Analysis of ume6 spore colonies that did germinate revealed that the majority of cells in microcolonies following the first few cell divisions were inviable. As the colony developed, the viability percentage increased and achieved wild-type levels within approximately six cell divisions, indicating that the requirement for Ume6p in cell viability is transient. This function is specific for germinating spores as Ume6p has no or only a modest impact on the return to the growth ability of cells arrested at other points in the cell cycle. These results define a new role for Ume6p in spore germination and the first few subsequent mitotic cell divisions.


Asunto(s)
Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo , Eliminación de Gen , Viabilidad Microbiana , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética
15.
Eukaryot Cell ; 9(12): 1835-44, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20971827

RESUMEN

Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains.


Asunto(s)
Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Meiosis , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/genética , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Genetics ; 181(1): 65-79, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19001291

RESUMEN

Sister-chromatid separation at the metaphase-anaphase transition is regulated by a proteolytic cascade. Destruction of the securin Pds1p liberates the Esp1p separase, which ultimately targets the mitotic cohesin Mcd1p/Scc1p for destruction. Pds1p stabilization by the spindle or DNA damage checkpoints prevents sister-chromatid separation while mutants lacking PDS1 (pds1Delta) are temperature sensitive for growth due to elevated chromosome loss. This report examined the role of the budding yeast Pds1p in meiotic progression using genetic, cytological, and biochemical assays. Similar to its mitotic function, Pds1p destruction is required for metaphase I-anaphase I transition. However, even at the permissive temperature for growth, pds1Delta mutants arrest with prophase I spindle and nuclear characteristics. This arrest was partially suppressed by preventing recombination initiation or by inactivating a subset of recombination checkpoint components. Further studies revealed that Pds1p is required for recombination in both double-strand-break formation and synaptonemal complex assembly. Although deleting PDS1 did not affect the degradation of the meiotic cohesin Rec8p, Mcd1p was precociously destroyed as cells entered the meiotic program. This role is meiosis specific as Mcd1p destruction is not altered in vegetative pds1Delta cultures. These results define a previously undescribed role for Pds1p in cohesin maintenance, recombination, and meiotic progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Profase Meiótica I , Proteínas Nucleares/metabolismo , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación/genética , Proteínas Nucleares/genética , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Securina , Transducción de Señal , Huso Acromático/metabolismo , Complejo Sinaptonémico/metabolismo , Transcripción Genética
17.
Elife ; 92020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33269701

RESUMEN

Viral infection induces the expression of numerous host genes that impact the outcome of infection. Here, we show that infection of human lung epithelial cells with influenza A virus (IAV) also induces a broad program of alternative splicing of host genes. Although these splicing-regulated genes are not enriched for canonical regulators of viral infection, we find that many of these genes do impact replication of IAV. Moreover, in several cases, specific inhibition of the IAV-induced splicing pattern also attenuates viral infection. We further show that approximately a quarter of the IAV-induced splicing events are regulated by hnRNP K, a host protein required for efficient splicing of the IAV M transcript in nuclear speckles. Finally, we find an increase in hnRNP K in nuclear speckles upon IAV infection, which may alter accessibility of hnRNP K for host transcripts thereby leading to a program of host splicing changes that promote IAV replication.


Asunto(s)
Empalme Alternativo , Núcleo Celular/virología , Células Epiteliales/virología , Virus de la Influenza A/crecimiento & desarrollo , Pulmón/virología , Replicación Viral , Células A549 , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Epiteliales/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Pulmón/metabolismo
18.
Cell Rep ; 28(11): 2795-2806.e3, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509743

RESUMEN

The 3' UTR (UTR) of human mRNAs plays a critical role in controlling protein expression and function. Importantly, 3' UTRs of human messages are not invariant for each gene but rather are shaped by alternative polyadenylation (APA) in a cell state-dependent manner, including in response to T cell activation. However, the proteins and mechanisms driving APA regulation remain poorly understood. Here we show that the RNA-binding protein CELF2 controls APA of its own message in a signal-dependent manner by competing with core enhancers of the polyadenylation machinery for binding to RNA. We further show that CELF2 binding overlaps with APA enhancers transcriptome-wide, and almost half of 3' UTRs that undergo T cell signaling-induced APA are regulated in a CELF2-dependent manner. These studies thus reveal CELF2 to be a critical regulator of 3' UTR identity in T cells and demonstrate an additional mechanism for CELF2 in regulating polyadenylation site choice.


Asunto(s)
Proteínas CELF/metabolismo , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/metabolismo , Poliadenilación/genética , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Proteínas CELF/genética , Línea Celular Tumoral , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Elementos de Facilitación Genéticos , Humanos , Intrones/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , RNA-Seq , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Transcriptoma
19.
Nat Commun ; 9(1): 2407, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921878

RESUMEN

Three of the eight RNA segments encoded by the influenza A virus (IAV) undergo alternative splicing to generate distinct proteins. Previously, we found that host proteins hnRNP K and NS1-BP regulate IAV M segment splicing, but the mechanistic details were unknown. Here we show NS1-BP and hnRNP K bind M mRNA downstream of the M2 5' splice site (5'ss). NS1-BP binds most proximal to the 5'ss, partially overlapping the U1 snRNP binding site, while hnRNP K binds further downstream and promotes U1 snRNP recruitment. Mutation of either or both the hnRNP K and NS1-BP-binding sites results in M segment mis-splicing and attenuated IAV replication. Additionally, we show that hnRNP K and NS1-BP regulate host splicing events and that viral infection causes mis-splicing of some of these transcripts. Therefore, our proposed mechanism of hnRNP K/NS1-BP mediated IAV M splicing provides potential targets of antiviral intervention and reveals novel host functions for these proteins.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Gripe Humana/genética , Proteínas Nucleares/genética , Precursores del ARN/genética , Empalme del ARN , ARN Mensajero/genética , Factores de Transcripción/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Virus de la Influenza A/genética , Gripe Humana/metabolismo , Gripe Humana/virología , Mutación , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral/genética
20.
Genetics ; 172(3): 1477-86, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16387872

RESUMEN

The Saccharomyces cerevisiae C-type cyclin and its cyclin-dependent kinase (Cdk8p) repress the transcription of several stress response genes. To relieve this repression, cyclin C is destroyed in cells exposed to reactive oxygen species (ROS). This report describes the requirement of cyclin C destruction for the cellular response to ROS. Compared to wild type, deleting cyclin C makes cells more resistant to ROS while its stabilization reduces viability. The Slt2p MAP kinase cascade mediates cyclin C destruction in response to ROS treatment but not heat shock. This destruction pathway is important as deleting cyclin C suppresses the hypersensitivity of slt2 mutants to oxidative damage. The ROS hypersensitivity of an slt2 mutant correlates with elevated programmed cell death as determined by TUNEL assays. Consistent with the viability studies, the elevated TUNEL signal is reversed in cyclin C mutants. Finally, two results suggest that cyclin C regulates programmed cell death independently of its function as a transcriptional repressor. First, deleting its corepressor CDK8 does not suppress the slt2 hypersensitivity phenotype. Second, the human cyclin C, which does not repress transcription in yeast, does regulate ROS sensitivity. These findings demonstrate a new role for the Slt2p MAP kinase cascade in protecting the cell from programmed cell death through cyclin C destruction.


Asunto(s)
Ciclinas/antagonistas & inhibidores , Ciclinas/genética , Proteínas Quinasas Activadas por Mitógenos/fisiología , Estrés Oxidativo/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Supresión Genética , Sustitución de Aminoácidos/genética , Apoptosis/genética , Ciclina C , Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes/fisiología , Ciclinas/metabolismo , Ciclinas/fisiología , Humanos , Peróxido de Hidrógeno/toxicidad , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/genética , Proteína Quinasa C/fisiología , Especies Reactivas de Oxígeno/toxicidad , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA