Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Med Virol ; 96(3): e29484, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402600

RESUMEN

Antiviral therapy based on neuraminidase (oseltamivir) or polymerase (baloxavir marboxil) inhibitors plays an important role in the management of influenza infections. However, the emergence of drug resistance and the uncontrolled inflammatory response are major limitations in the treatment of severe influenza disease. Protectins D1 (PD1) and DX (PDX), part of a family of pro-resolving mediators, have previously demonstrated anti-influenza activity as well as anti-inflammatory properties in various clinical contexts. Herein, we synthetized a series of simplified PDX analogs and assessed their in vitro antiviral activity against influenza A(H1N1) viruses, including oseltamivir- and baloxavir-resistant variants. In ST6GalI-MDCK cells, the PDX analog AN-137B reduced viral replication in a dose-dependent manner with IC50 values of 23.8 for A/Puerto Rico/8/1934 (H1N1) and between 32.6 and 36.7 µM for susceptible and resistant A(H1N1)pdm09 viruses. In MTS-based cell viability experiments, AN-137B showed a 50% cellular cytotoxicity (CC50 ) of 638.7 µM with a resulting selectivity index of 26.8. Of greater importance, the combination of AN-137B with oseltamivir or baloxavir resulted in synergistic and additive in vitro effects, respectively. Treatment of lipopolysaccharide (LPS)-stimulated macrophages with AN-137B resulted in a decrease of iNOS activity as shown by the reduction of nitrite production, suggesting an anti-inflammatory effect. In conclusion, our results indicate that the protectin analog AN-137B constitutes an interesting therapeutic modality against influenza A virus, warranting further evaluation in animal models.


Asunto(s)
Dibenzotiepinas , Ácidos Docosahexaenoicos , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Morfolinas , Piridonas , Triazinas , Animales , Humanos , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Farmacorresistencia Viral , Neuraminidasa
2.
J Org Chem ; 88(11): 7088-7095, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37172290

RESUMEN

We report a gram-scale total synthesis of protectin DX (PDX) following a convergent synthetic route (24 steps) from l-malic acid. This novel synthetic strategy is based on the assembly of three main building blocks using a Sonogashira coupling reaction (blocks A and B) and Wittig olefination (block C) to provide the 22-carbon backbone of PDX. A key stereoselective reduction of enediyne leads to a central E,Z,E-trienic system of PDX and also gives access to its labeled versions (D and T).

3.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677690

RESUMEN

Estradiol (E2) plays an important role in the progression of diseases such as breast cancer and endometriosis. Inhibition of 17ß-hydroxysteroid dehydrogenase type 1 (17ß-HSD1), the enzyme that catalyzes the last step in the biosynthesis of the estrogenic hormone E2, therefore constitutes an interesting approach for the treatment of these two estrogen-dependent diseases. In order to obtain new inhibitors of 17ß-HSD1, the impact of a m-carbamoylphenyloxy group at position three of an estrane nucleus was evaluated by preparing three derivatives of estrone (E1) and E2 using a microwave-assisted synthesis of diaryl ethers. Their inhibitory activity was addressed on two cell lines (T-47D and Z-12) representative of breast cancer and endometriosis, respectively, but unlike T-47D cells, Z-12 cells were not found suitable for testing potential 17ß-HSD1 inhibitors. Thus, the addition of the m-carbamoylphenyl group at C3 of E1 (compound 5) did not increase the inhibition of E1 to E2 transformation by 17ß-HSD1 present in T-47D cells (IC50 = 0.31 and 0.21 µM for 5 and E1, respectively), and this negative effect was more obvious for E2 derivatives 6 and 10 (IC50 = 1.2 and 1.3 µM, respectively). Molecular docking allowed us to identify key interactions with 17ß-HSD1 and to highlight these new inhibitors' actions through an opposite orientation than natural enzyme substrate E1's classical one. Furthermore, molecular modeling experiments explain the better inhibitory activity of E1-ether derivative 5, as opposed to the E2-ether derivatives 6 and 10. Finally, when tested on T-47D and Z-12 cells, compounds 5, 6 and 10 did not stimulate the proliferation of these two estrogen-dependent cell lines. In fact, they reduced it.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Neoplasias de la Mama , Endometriosis , Inhibidores Enzimáticos , Femenino , Humanos , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Estradiol , Estrógenos , Estrona/farmacología , Simulación del Acoplamiento Molecular
4.
Bioorg Chem ; 129: 106145, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36174444

RESUMEN

Prostate cancer is the most common cancer among men and the development of new therapeutic agents is needed for its treatment and/or diagnosis. 17ß-hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is involved in the production of androgens, which stimulates the proliferation of prostate cancer cells. Piperazinomethyl-androsterone sulfonamide derivatives were developed as 17ß-HSD3 inhibitors and the concentration of a representative sulfonamide derivative (compound 1) was found to accumulate in prostate tumor tissues relatively to plasma in a mouse xenograft experiment. This finding gives us the opportunity to specifically target the prostate cancer tumors through the development of a radiolabelled version of compound 1 toward targeted molecular radiotherapy or radioimaging diagnosis. The chemical synthesis of fluorinated and iodinated analogs of compound 1 was achieved, leading to a series of compounds with similar levels of inhibition as the initial candidate. From 17ß-HSD3 inhibition activity, molecular modeling and mouse plasma-concentration studies, the most promising compound of this series was selected, its 18F-radiolabelled version (18F-3) synthesized, and imaging/biodistribution studies engaged. When injected in mice, however, 18F-3 uptake in the target tissues (LNCaP[17ß-HSD3] tumors and testicles) was not sufficient to allow their visualization by positron emission tomography. Plasma concentration values of compounds 3-8 administered orally, however, showed that the para-iodo compound 7 is the most metabolically stable and could therefore be an interesting alternative for radiolabelling and radiotreatment.


Asunto(s)
Inhibidores Enzimáticos , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Distribución Tisular , Inhibidores Enzimáticos/química , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Sulfonamidas/farmacología
5.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34681843

RESUMEN

Aminosteroid derivative RM-581 was previously identified as an endoplasmic-reticulum (ER) stress inducer with potent in vitro and in vivo anticancer activities. We report its evaluation in androgen-independent prostate cancer (PC-3) cells. RM-581 efficiently blocks PC-3 cell proliferation with stronger activity than that of a selection of known antineoplastic agents. This later also showed a synergistic effect with docetaxel, able to block the proliferation of docetaxel-resistant PC-3 cells and, contrary to docetaxel, did not induce cell resistance. RM-581 induced an increase in the expression level of ER stress-related markers of apoptosis, potentially triggered by the presence of RM-581 in the ER of PC-3 cells. These in vitro results were then successfully translated in vivo in a PC-3 xenograft tumor model in nude mice, showing superior blockade than that of docetaxel. RM-581 was also able to stop the progression of PC-3 cells when they had become resistant to docetaxel treatment. Concomitantly, we observed a decrease in gene markers of mevalonate and fatty acid pathways, and intratumoral levels of cholesterol by 19% and fatty acids by 22%. Overall, this work demonstrates the potential of an ER stress inducer as an anticancer agent for the treatment of prostate cancers that are refractory to commonly used chemotherapy treatments.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Estrés del Retículo Endoplásmico , Estranos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Docetaxel/uso terapéutico , Estranos/uso terapéutico , Humanos , Masculino , Ratones , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata/fisiopatología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Bioorg Med Chem Lett ; 30(2): 126783, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31753699

RESUMEN

5α-Dihydrotestosterone (5α-DHT) possesses a great affinity for the androgen receptor (AR), and its binding to AR promotes the proliferation of prostate cancer (PC) cells in androgen-dependent PC. Primarily synthesized from testosterone (T) in testis, 5α-DHT could also be produced from 5α-androstane-3α,17ß-diol (3α-diol), an almost inactive androgen, following non-classical pathways. We reported the chemical synthesis of non-commercially available [4-14C]-3α-diol from [4-14C]-T, and the development of a biological assay to identify inhibitors of the 5α-DHT formation from radiolabeled 3α-diol in LAPC-4 cell PC model. We measured the inhibitory potency of 5α-androstane derivatives against the formation of 5α-DHT, and inhibition curves were obtained for the most potent compounds (IC50 = 1.2-14.1 µM). The most potent inhibitor 25 (IC50 = 1.2 µM) possesses a 4-(4-CF3-3-CH3O-benzyl)piperazinyl methyl side chain at C3ß and 17ß-OH/17α-CCH functionalities at C17 of a 5α-androstane core.


Asunto(s)
Andrógenos/metabolismo , Androstano-3,17-diol/metabolismo , Dihidrotestosterona/metabolismo , Androstano-3,17-diol/química , Línea Celular Tumoral , Dihidrotestosterona/química , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Relación Estructura-Actividad
7.
Bioorg Med Chem ; 28(7): 115368, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122754

RESUMEN

Steroid sulfatase (STS) is an important enzyme regulating the conversion of sulfated steroids into their active hydroxylated forms. Notably, the inhibition of STS has been shown to decrease the levels of active estrogens and was translated into clinical trials for the treatment of breast cancer. Based on quantitative structure-activity relationship (QSAR) and molecular modeling studies, we herein report the design of fluorescent inhibitors of STS by adding a dansyl group on an estrane scaffold. Synthesis of 17α-dansylaminomethyl-estradiol (7) and its sulfamoylated analog 8 were achieved from estrone in 5 and 6 steps, respectively. Inhibition assays on HEK-293 cells expressing exogenous STS revealed a high level of inhibition for compound 7 (IC50 = 69 nM), a value close to the QSAR model prediction (IC50 = 46 nM). As an irreversible inhibitor, sulfamate 8 led to an even more potent inhibition in the low nanomolar value (IC50 = 2.1 nM). In addition, we show that the potent STS inhibitor 8 can be employed as an optical imaging tool to investigate intracellular enzyme sub-localization as well as inhibitory behavior. As a result, confocal microscopy analysis confirmed good penetration of the STS fluorescent inhibitor 8 in cells and its localization in the endoplasmic reticulum where STS is localized.


Asunto(s)
Estradiol/análogos & derivados , Esteril-Sulfatasa/antagonistas & inhibidores , Estradiol/síntesis química , Estrona/química , Células HEK293 , Humanos , Microscopía Confocal , Modelos Moleculares , Estructura Molecular , Imagen Óptica , Relación Estructura-Actividad Cuantitativa
8.
Invest New Drugs ; 37(3): 431-440, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30062573

RESUMEN

The high fatality and morbidity of pancreatic cancer have remained almost unchanged over the last decades and new clinical therapeutic tools are urgently needed. We determined the cytotoxic activity of aminosteroid derivatives RM-133 (androstane) and RM-581 (estrane) in three human pancreatic cancer cell lines (BxPC3, Hs766T and PANC-1). In PANC-1, a similar level of antiproliferative activity was observed for RM-581 and RM-133 (IC50 = 3.9 and 4.3 µM, respectively), but RM-581 provided a higher selectivity index (SI = 12.8) for cancer cells over normal pancreatic cells than RM-133 (SI = 2.8). We also confirmed that RM-581 induces the same ER stress-apoptosis markers (BIP, CHOP and HERP) than RM-133 in PANC-1 cells, pointing out to a similar mechanism of action. Finally, these relevant in vitro results have been successfully translated in vivo by testing RM-581 using different doses (10-60 mg/kg/day) and modes of administration in PANC-1 xenograft models, which have led to tumor regression without any sign of toxicity in mice (animal weight, behavior and histology). Interestingly, RM-581 fully reduced the pancreatic tumor growth when administered orally in mice.


Asunto(s)
Androstenos/farmacología , Antineoplásicos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estranos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Androstenos/química , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estranos/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Org Chem ; 84(2): 495-505, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30586310

RESUMEN

The first total synthesis of a lipid mediator derived from natural ω-3-fatty acid docosahexaenoic acid (DHA), 10 S,17 S-diHDHA (also referred to as protectin DX/PDX), was achieved in a convergent route (29 steps). The two chiral hydroxyl groups at C-10 and C-17 were derived from readily available ( S)-1,2,4-butanetriol and ( R)-glycidol, respectively. The two stereodefined E-double bonds were generated by a Takai olefination, and the skipped diene side chain was introduced with a stereocontrolled Wittig olefination. Importantly, the sensitive conjugated E, Z, E-triene intermediate was generated by a Boland reduction of the central triple bond of a E, E-dienyne. Overall, this synthetic strategy should allow the preparation of a larger quantity of PDX, which is inaccessible via previously reported biosynthetic approaches.


Asunto(s)
Ácidos Docosahexaenoicos/síntesis química , Hipoglucemiantes/síntesis química , Lípidos/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Estructura Molecular
10.
Pharmacol Res ; 128: 52-60, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29287690

RESUMEN

The aminosteroid derivative RM-133 is an effective anticancer molecule for which proof of concept has been achieved in several mouse xenograph models (HL-60, MCF-7, PANC-1 and OVCAR-3). To promote this new family of molecules toward a clinical phase 1 trial, the mechanism of action governing the anticancer properties of the representative candidate RM-133 needs to be characterized. In vitro experiments were first used to determine that RM-133 causes apoptosis in cancer cells. Then, using proteomic and transcriptomic experiments, RM-133 cytotoxicity was proven to be achieved via the endoplasmic reticulum (ER)-related apoptosis, which characterizes RM-133 as an endoplasmic reticulum stress aggravator (ERSA) anticancer drug. Furthermore, an shRNA-genome-wide screening has permitted to identify the steroidogenic acute regulator-related lipid transfer protein 5 (STARD5) as a major player in the RM-133 ER-related apoptosis mechanism, which was validated by an in vitro binding experiment. Altogether, the results presented herein suggest that RM-133 provokes a disturbance of cholesterol homeostasis via the implication of STARD5, which delivers an ERSA molecule to the ER. These results will be a springboard for RM-133 in its path toward clinical use.


Asunto(s)
Androstenos/farmacología , Antineoplásicos/farmacología , Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Estrés del Retículo Endoplásmico , Proteínas Adaptadoras del Transporte Vesicular , Apoptosis/efectos de los fármacos , Proteínas Portadoras/genética , Línea Celular Tumoral , Homeostasis/efectos de los fármacos , Humanos
11.
Bioorg Med Chem Lett ; 28(22): 3554-3559, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297283

RESUMEN

17ß-Hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a mitochondrial enzyme known for its potential role in Alzheimer's Disease (AD). 17ß-HSD10, by its oxidative activity, could decrease the concentration of two important neurosteroids, allopregnanolone (ALLOP) and 17ß-estradiol (E2), respectively preventing their neurogenesis and neuroprotective effects. Since the inhibition of 17ß-HSD10 could lead to a new treatment for AD, we developed two biological assays using labeled ALLOP or E2 as substrates to measure the inhibitory activity of compounds against pure 17ß-HSD10 protein. After the optimization of different parameters (time, concentration of enzyme, substrate and cofactor), analogs of the first reported steroidal inhibitor of 17ß-HSD10 in intact cells were screened to determine their inhibitory potency for the ALLOP or the E2 oxidation. One compound, androstane derivative 5, possesses the best dual inhibition against both transformations (ALLOP, IC50 = 235 µM and E2, IC50 = 610 µM). Some compounds are dual inhibitors to a lesser extent, and others seem selective for one of the transformations in particular. By developing two reliable assays and by identifying a first generation of steroidal inhibitors of pure 17ß-HSD10, this preliminary study opens the door to new and more potent inhibitors.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/metabolismo , Inhibidores Enzimáticos/química , Estradiol/metabolismo , Pregnanolona/metabolismo , Esteroides/química , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 5-alfa-Dihidroprogesterona/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Estrona/metabolismo , Células HEK293 , Humanos , Esteroides/metabolismo , Esteroides/uso terapéutico , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 25(7): 2065-2073, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28254377

RESUMEN

17ß-Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is a major player in human endocrinology, being one of the most important enzymes involved in testosterone production. To capitalize on the discovery of RM-532-105, a steroidal 17ß-HSD3 inhibitor, we explored the effect of its backbone configuration on inhibitory activity, androgenic profile, and metabolic stability. Two modifications that greatly alter the natural shape of steroids, i.e. inversion of the methyl on carbon 13 (13α-CH3 instead of 13ß-CH3) and inversion of the hydrogen on carbon 5 (5ß-H instead of 5α-H), were tested after the syntheses in 6 steps of 2 isomeric forms (5α/13α-RM-532-105 (6a) and 5ß/13ß-RM-532-105 (6b), respectively) of the 17ß-HSD3 inhibitor RM-532-105 (5α/13ß-configurations). For compound 6b, a cis/trans junction of the A/B rings did not significantly alter the inhibitory activity on 17ß-HSD3 (IC50=0.15µM) as well as the liver microsomal stability (16.6% of 6b remaining after 1h incubation) compared to RM-532-105 (IC50=0.11µM and 14.1% remaining). In contrast, a trans/cis junction of C/D rings reduced the inhibitory activity on 17ß-HSD3 (IC50=1.09µM) but increased the metabolic stability with 29.4% of compound 6a remaining after incubation. The structural modifications represented by compounds 6a and 6b did not change the non-androgenicity profile of an androsterone derivative such as RM-532-105, but slightly increased its cytotoxic activity.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Androstanos/química , Inhibidores Enzimáticos/farmacología , Espectroscopía de Resonancia Magnética con Carbono-13 , Inhibidores Enzimáticos/química , Humanos , Masculino , Estructura Molecular , Neoplasias de la Próstata/enzimología , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Infrarroja
13.
Bioorg Med Chem Lett ; 26(9): 2179-83, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27025340

RESUMEN

The steroidogenic enzyme 17ß-hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is a therapeutic target in the management of androgen-sensitive diseases such as prostate cancer and benign prostate hyperplasia. In this Letter, we designed and synthesized the first fluorescent inhibitor of this enzyme by combining a fluorogenic dansyl moiety to the chemical structure of a known inhibitor of 17ß-HSD3. The synthesized compound 3 is a potent fluorogenic compound (λex=348 nm and λ em=498 nm). It crosses the cell membrane, keeps its fluorescent properties and is distributed inside the LNCaP cells overexpressing 17ß-HSD3, where it inhibits the transformation of 4-androstene-3,17-dione into the androgen testosterone (IC50=262 nM).


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Androstanos/farmacología , Compuestos de Dansilo/farmacología , Colorantes Fluorescentes/farmacología , Androstanos/síntesis química , Línea Celular Tumoral , Membrana Celular/metabolismo , Compuestos de Dansilo/síntesis química , Citometría de Flujo , Colorantes Fluorescentes/síntesis química , Humanos , Sulfonamidas/síntesis química , Sulfonamidas/farmacología
14.
Bioorg Med Chem ; 23(17): 5433-51, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26277760

RESUMEN

17ß-Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is a key enzyme involved in the biosynthesis of testosterone and dihydrotestosterone. These hormones are known to stimulate androgen-dependent prostate cancer. In order to generate effective inhibitors of androgen biosynthesis without androgenic effect, we synthesized a new family of 3-spiromorpholinone and 3-spirocarbamate androsterone derivatives bearing diversified hydrophobic groups. We also tested their inhibitory activity in a microsomal fraction of 17ß-HSD3-containing rat testes, and their androgenic effect on androgen-sensitive LAPC-4 cells. From our first structure-activity relationship (SAR) study, we noted that compound 7e inhibited 17ß-HSD3 (77% at 0.1 µM) compared to our reference compound RM-532-105 (76% at 0.1 µM), but exhibited a residual androgenic effect. A library of 7e analogue compounds was next synthesized in order to generate compounds with reduced androgenic activity. In this new SAR study, the sulfonamide compound 7e21 and the carboxamide compound 7e22 inhibited 17ß-HSD3 (IC50 = 28 and 88 nM, respectively). These two compounds were not androgenic and not cytotoxic even at the highest concentration tested, but their inhibitory activity decreased in intact LNCaP cells overexpressing 17ß-HSD3 (LNCaP[17ß-HSD3]). Structural modifications of these two lead compounds could however be tested to produce a second generation of 17ß-HSD3 inhibitors.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Carbamatos/química , Carbamatos/farmacología , Morfolinas/química , Morfolinas/farmacología , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Andrógenos/química , Andrógenos/farmacología , Animales , Línea Celular Tumoral , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Próstata/efectos de los fármacos , Próstata/enzimología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Ratas
15.
Bioorg Med Chem ; 22(21): 5847-59, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25300820

RESUMEN

Aminosteroid derivatives represent a new family of compounds with promising antiproliferative activity over different cancer cell lines. Among all the aminosteroid derivatives synthesised in our laboratory, we have identified E-37P as one of the more potent when tested in vitro. Unfortunately, the pharmacokinetic properties of E-37P decrease its effectiveness when tested in vivo. To improve the bioavailability and increase the efficiency of aminosteroid E-37P, two series of analog compounds were synthesised by classic chemical synthesis, they were then characterized, and the concentration that inhibits 50% of cell proliferation (IC50) was determined on different cell lines. RM-133, a 5α-androstane-3α,17ß-diol derivative with a quinoline nucleus at the end of the piperazine-proline side-chain at position 2ß and an ethinyl at position 17α, showed very good antiproliferative activity among the five cancer cell lines studied (IC50=0.1, 0.1, 0.1, 2.0 and 1.1 µM for HL-60, MCF-7, T-47D, LNCaP and WEHI-3, respectively). Moreover, the plasmatic concentration of RM-133 at 3h, when injected subcutaneously in rats, was 2.3-fold higher than that of E-37P (151 vs 64.8 ng/mL). Furthermore, RM-133 weakly inhibited the two representative liver enzymes, CYP3A4 and CYP2D6, indicating a very low risk of drug-drug interactions. The cytotoxicity of RM-133 against normal cells was tested on peripheral blood lymphocytes (PBL) obtained from different donors and previously activated with phytohemagglutinin-L. PBL responded differently to treatment with RM-133, we observed a stimulation of cell proliferation and/or cytotoxicity in a dose-dependent manner. Based on these results, additional studies are currently underway to evaluate the selectivity of our lead compound against normal cell lines in a more detailed fashion.


Asunto(s)
Androstenos/química , Colestanoles/síntesis química , Androstenos/farmacocinética , Androstenos/toxicidad , Animales , Disponibilidad Biológica , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colestanoles/farmacocinética , Colestanoles/toxicidad , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Células HL-60 , Semivida , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Linfocitos/citología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratones , Piperazinas/química , Prolina/química , Quinolinas/química , Ratas
16.
J Steroid Biochem Mol Biol ; 242: 106544, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38754521

RESUMEN

Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17ß-hydroxysteroid dehydrogenase type 7 (17ß-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17ß-HSD7 inhibitors of novel carbamate derivatives 3 and 4 are described. Like previous 17ß-HSD7 inhibitors 1 and 2, compounds 3 and 4 bear a hydrophobic nonyl side chain at the C-17ß position of a 4-aza-5α-androstane nucleus, but compound 3 has an oxygen atom replacing the CH2 in the steroid A-ring C-2 position, while compound 4 has a C17-spiranic E-ring containing a carbamate function. They both inhibited the in vitro transformation of estrone (E1) into E2 by 17ß-HSD7, but the introduction of a (17 R)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound 4 (IC50 = 63 nM) is an inhibitor 14 times more powerful than compound 3 (IC50 = 900 nM). Furthermore, when compared to the reference inhibitor 1 (IC50 = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Inhibidores Enzimáticos , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Estradiol/química , Estradiol/metabolismo , Estradiol/farmacología , Carbamatos/química , Carbamatos/farmacología , Carbamatos/síntesis química , Estrona/química , Estrona/farmacología , Estrona/síntesis química
17.
Antioxidants (Basel) ; 13(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38671833

RESUMEN

In osteoarthritis (OA), oxidative stress plays a crucial role in maintaining and sustaining cartilage degradation. Current OA management requires a combination of pharmaceutical and non-pharmacological strategies, including intraarticular injections of hyaluronic acid (HA). However, several lines of evidence reported that HA oxidation by reactive oxygen species (ROS) is linked with HA cleavage and fragmentation, resulting in reduced HA viscosity. Resolvin D1 (RvD1) is a lipid mediator that is biosynthesized from omega-3 polyunsaturated fatty acids and is a good candidate with the potential to regulate a panoply of biological processes, including tissue repair, inflammation, oxidative stress, and cell death in OA. Herein, newly designed and synthesized imidazole-derived RvD1 analogues were introduced to compare their potential antioxidant properties with commercially available RvD1. Their antioxidant capacities were investigated by several in vitro chemical assays including oxygen radical absorbance capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, ferric ion reducing antioxidant power, hydroxyl radical scavenging, and HA fragmentation assay. All results proved that imidazole-derived RvD1 analogues showed excellent antioxidant performance compared to RvD1 due to their structural modifications. Interestingly, they scavenged the formed reactive oxygen species (ROS) and protected HA from degradation, as verified by agarose gel electrophoresis and gel permission chromatography. A computational study using Gaussian 09 with DFT calculations and a B3LYP/6-31 G (d, p) basis set was also employed to study the relationship between the antioxidant properties and chemical structures as well as calculation of the molecular structures, frontier orbital energy, molecular electrostatic potential, and bond length. The results showed that the antioxidant activity of our analogues was higher than that of RvD1. In conclusion, the findings suggest that imidazole-derived RvD1 analogues can be good candidates as antioxidant molecules for the treatment of oxidative stress-related diseases like OA. Therefore, they can prolong the longevity of HA in the knee and thus may improve the mobility of the articulation.

18.
Cancers (Basel) ; 15(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37296995

RESUMEN

The aminosteroid derivative RM-581 blocks with high potency the growth of androgen-dependent (AR+) prostate cancer VCaP, 22Rv1, and LAPC-4 cells. Notably, RM-581 demonstrated superior antiproliferative activity in LAPC-4 cells compared to enzalutamide and abiraterone, two drugs that exhibited a synergistic effect in combination with RM-581. These findings suggest that RM-581 may have an action that is not directly associated with the hormonal pathway of androgens. Furthermore, RM-581 completely blocks tumor growth in LAPC-4 xenografts when given orally at 3, 10, and 30 mg/kg in non-castrated (intact) nude mice. During this study, an accumulation of RM-581 was observed in tumors compared to plasma (3.3-10 folds). Additionally, the level of fatty acids (FA) increased in the tumors and livers of mice treated with RM-581 but not in plasma. The increase was greater in unsaturated FA (21-28%) than in saturated FA (7-11%). The most affected FA were saturated palmitic acid (+16%), monounsaturated oleic acid (+34%), and di-unsaturated linoleic acid (+56%), i.e., the 3 most abundant FA, with a total of 55% of the 56 FA measured. For cholesterol levels, there was no significant difference in the tumor, liver, or plasma of mice treated or not with RM-581. Another important result was the innocuity of RM-581 in mice during a 28-day xenograft experiment and a 7-week dose-escalation study, suggesting a favorable safety window for this new promising drug candidate when given orally.

19.
J Clin Med ; 12(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445276

RESUMEN

Breast cancer (BC) is a heterogenous disease classified into four molecular subtypes (Luminal A, Luminal B, HER2 and triple-negative (TNBC)) depending on the expression of the estrogen receptor (ER), the progesterone receptor (PR) and the human epidermal receptor 2 (HER2). The development of effective treatments for BC, especially TNBC, remains a challenge. Aminosteroid derivative RM-581 has previously shown an antiproliferative effect in multiple cancers in vitro and in vivo. In this study, we evaluated its effect in BC cell lines representative of BC molecular subtypes, including metastatic TNBC. We found that RM-581 has an antiproliferative effect on all BC molecular subtypes, especially on Luminal A and TNBC, in 2D and 3D cultures. The combination of RM-581 and trastuzumab or trastuzumab-emtansine enhanced the anticancer effect of each drug for HER2-positive BC cell lines, and the combination of RM-581 and taxanes (docetaxel or paclitaxel) improved the antiproliferative effect of RM-581 in TNBC and metastatic TNBC cell lines. We also confirmed that RM-581 is an endoplasmic reticulum (EnR)-stress aggravator by inducing an increase in EnR-stress-induced apoptosis markers such as BIP/GRP78 and CHOP and disrupting lipid homeostasis. This study demonstrates that RM-581 could be effective for the treatment of BC, especially TNBC.

20.
Invest New Drugs ; 30(1): 176-85, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20890632

RESUMEN

RM, a novel aminosteroid synthesized by our research group, shows a broad spectrum of antitumor activity against nine cancer cell lines and limited toxicity against two normal cell lines. However, its related mechanism of action has not yet been elucidated. In this study, we investigated the cellular and molecular events underlying the cytotoxicity of RM in human acute promyelocytic leukemia HL-60 cells. RM was found to induce a G0/G1 cell cycle block of HL-60 cells but not terminal myeloid differentiation. Interestingly, typical apoptotic morphological changes were exhibited by HL-60 cells treated with RM stained with Hoechst 33342 and examined by fluorescence microscopy. Apoptotic death assay using annexin-V/propidium iodide dual staining flow cytometry demonstrated a dose-dependent apoptotic effect of RM on HL-60 cells. In addition, RM induced the cleavage of caspase-3, caspase-8 and PARP, but not the cleavage of caspase-9. Our findings suggest that RM reduces HL-60 cells survival through a caspase-dependent death receptor pathway.


Asunto(s)
Androstano-3,17-diol/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Leucemia Promielocítica Aguda/patología , Caspasas/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células HL-60 , Humanos , Microscopía Fluorescente , Poli(ADP-Ribosa) Polimerasas/metabolismo , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA