Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 58(44): 4398-4407, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31625391

RESUMEN

γ-Secretase is a membrane-embedded aspartyl protease complex with presenilin as the catalytic component that cleaves within the transmembrane domain (TMD) of >90 known substrates, including the amyloid precursor protein (APP) of Alzheimer's disease. Processing by γ-secretase of the APP TMD produces the amyloid ß-peptide (Aß), including the 42-residue variant (Aß42) that pathologically deposits in the Alzheimer brain. Complex proteolysis of APP substrate by γ-secretase involves initial endoproteolysis and subsequent carboxypeptidase trimming, resulting in two pathways of Aß production: Aß49 → Aß46 → Aß43 → Aß40 and Aß48 → Aß45 → Aß42 → Aß38. Dominant mutations in APP and presenilin cause early onset familial Alzheimer's disease (FAD). Understanding how γ-secretase processing of APP is altered in FAD is essential for elucidating pathogenic mechanisms in FAD and developing effective therapeutics. To improve our understanding, we designed synthetic APP-based TMD substrates as convenient functional probes for γ-secretase. Installation of the helix-inducing residue α-aminoisobutyric acid provided full TMD helical substrates while also facilitating their synthesis and increasing the solubility of these highly hydrophobic peptides. Through mass spectrometric analysis of proteolytic products, synthetic substrates were identified that were processed in a manner that reproduced physiological processing of APP substrates. Validation of these substrates was accomplished through mutational variants, including the installation of two natural APP FAD mutations. These FAD mutations also resulted in increased levels of formation of Aß-like peptides corresponding to Aß45 and longer, raising the question of whether the levels of such long Aß peptides are indeed increased and might contribute to FAD pathogenesis.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Precursor de Proteína beta-Amiloide/química , Fragmentos de Péptidos/química , Enfermedad de Alzheimer/genética , Secuencia de Aminoácidos , Ácidos Aminoisobutíricos/química , Precursor de Proteína beta-Amiloide/síntesis química , Precursor de Proteína beta-Amiloide/genética , Espectrometría de Masas , Mutación , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/genética , Conformación Proteica en Hélice alfa , Proteolisis
2.
ACS Chem Neurosci ; 14(23): 4216-4226, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37942767

RESUMEN

γ-Secretase is an intramembrane aspartyl protease complex that cleaves the transmembrane domain of over 150 peptide substrates, including amyloid precursor protein (APP) and the Notch family of receptors, via two conserved aspartates D257 and D385 in the presenilin-1 (PS1) catalytic subunit. However, while the activation of γ-secretase for cleavage of APP has been widely studied, the cleavage of Notch by γ-secretase remains poorly explored. Here, we combined Gaussian accelerated molecular dynamics (GaMD) simulations and mass spectrometry (MS) analysis of proteolytic products to present the first dynamic models for cleavage of Notch by γ-secretase. MS showed that γ-secretase cleaved the WT Notch at Notch residue G34, while cleavage of the L36F mutant Notch occurred at Notch residue C33. Initially, we prepared our simulation systems starting from the cryoEM structure of Notch-bound γ-secretase (PDB: 6IDF) and failed to capture the proper cleavages of WT and L36F Notch by γ-secretase. We then discovered an incorrect registry of the Notch substrate in the PS1 active site through alignment of the experimental structure of Notch-bound (PDB: 6IDF) and APP-bound γ-secretase (PDB: 6IYC). Every residue of the APP substrate was systematically mutated to the corresponding Notch residue to prepare a resolved model of Notch-bound γ-secretase complexes. GaMD simulations of the resolved model successfully captured γ-secretase activation for proper cleavages of both WT and L36F mutant Notch. Our findings presented here provided mechanistic insights into the structural dynamics and enzyme-substrate interactions required for γ-secretase activation for cleavage of Notch and other substrates.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Simulación de Dinámica Molecular , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Receptores Notch , Membrana Celular/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA