RESUMEN
Staphylococcus aureus isolates from dairy cow mastitis are not always consistent with the characteristic morphology described, and molecular investigation is often needed. The aim of the study was to develop a duplex real-time PCR assay for rapid identification of Staph. aureus isolates, targeting both nuc and Sa442. Overall, 140 isolates collected from dairy cow mastitis in 90 different herds, were tested. All strains had been identified using morphological and biochemical characteristics. DNA from each strain was amplified in real-time PCR assay, to detect nuc or Sa442. Thereafter, a duplex real-time PCR assay was performed, and specificity of the amplified products was assessed by high resolution melting curve analysis. Out of 124 Staph. aureus isolates, 33 did not show the typical morphology or enzymic activity; in 118 strains, the two melt-curve peaks consistent with nuc and Sa442 were revealed, while 2 isolates showed only the peak consistent with Sa442. Four isolates bacteriologically identified as Staph. aureus, were PCR-negative and were further identified as Staph. pseudintermedius by sequencing. Staph. pseudintermedius and coagulase-negative staphylococci did not carry nuc or Sa442. The results showed the correct identification of all isolates, comprehending also coagulase-or nuc-negative Staph. aureus, while other coagulase-positive Staphylococci were correctly identified as non-Staph. aureus. Both sensitivity and specificity were 100%. High resolution melting analysis allowed easy detection of unspecific products. Finally, the duplex real-time PCR was applied directly to 40 milk samples, to detect infected mammary quarters. The assay confirmed the results of bacteriological analysis, on Staph. aureus-positive or-negative samples. Therefore, the proposed duplex real-time PCR could be used in laboratory routine as a cost-effective and powerful tool for high-throughput identification of atypical Staph. aureus isolates causing dairy cow mastitis. Also, it could be applied directly to milk samples, to detect Staph. aureus mammary infections avoiding bacteriological analysis.
Asunto(s)
Mastitis Bovina/microbiología , Leche/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Staphylococcus aureus/clasificación , Staphylococcus aureus/aislamiento & purificación , Animales , Proteínas Bacterianas/genética , Bovinos , Coagulasa/análisis , ADN Bacteriano/análisis , Femenino , Nucleasa Microcócica/genética , Sensibilidad y Especificidad , Staphylococcus aureus/genéticaRESUMEN
Paratuberculosis or Johne's disease in cattle is a chronic granulomatous gastroenteritis caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP). Paratuberculosis is not treatable; therefore, the early identification and isolation of infected animals is a key point to reduce its incidence. In this paper, we analyse RNAseq experimental data of 5 ELISA-negative cattle exposed to MAP in a positive herd, compared to 5 negative-unexposed controls. The purpose was to find a small set of differentially expressed genes able to discriminate between exposed animals in a preclinical phase from non-exposed controls. Our results identified 10 transcripts that differentiate between ELISA-negative, clinically healthy, and exposed animals belonging to paratuberculosis-positive herds and negative-unexposed animals. Of the 10 transcripts, five (TRPV4, RIC8B, IL5RA, ERF, CDC40) showed significant differential expression between the three groups while the remaining 5 (RDM1, EPHX1, STAU1, TLE1, ASB8) did not show a significant difference in at least one of the pairwise comparisons. When tested in a larger cohort, these findings may contribute to the development of a new diagnostic test for paratuberculosis based on a gene expression signature. Such a diagnostic tool could allow early interventions to reduce the risk of the infection spreading.
RESUMEN
Dairy products can harbor various microorganisms (e.g., Campylobacter spp., Salmonella spp., Listeria monocytogenes, verocytotoxin-producing Escherichia coli) arising from animal reservoirs, and which can become important sources of foodborne illness. Therefore, early detection of food pathogens is crucial to prevent diseases. We wished to develop an accurate quantitative protocol based on a droplet digital polymerase chain reaction (ddPCR) involving eight individual TaqMan™ reactions to detect simultaneously, without selective enrichment, Listeria spp., L. monocytogenes, Salmonella spp., verocytotoxin-producing E. coli and Campylobacter spp. in cheese. ddPCR (a "third-generation PCR") provides absolute quantification of target DNAs without requirement of a standard curve, which simplifies experimentation and data comparability. The accuracy, specificity and sensitivity of the developed ddPCR system were assessed using purified DNA from 50 reference pathogenic and non-pathogenic strains from international or Italian collections and analyzing soft cheese samples artificially contaminated with serial dilutions (from 4 × 106 to 4 × 101 CFU/g) of pure cultures from the American Type Culture Collection. Finally, the performance of our ddPCR system was compared by parallel testing with quantitative PCR: it gave higher sensitivity (102 CFU/g for the Listeria spp. assay) without the necessity of a standard curve. In conclusion, this is the first ddPCR system developed for simultaneous detection of common foodborne pathogens in cheese using a single set of amplification conditions. As such, it could become a useful strategy for high-throughput screening of microorganisms to evaluate the quality and safety of food products.
RESUMEN
Paratuberculosis in cattle is a chronic granulomatous gastroenteritis caused by Mycobacterium avium subsp. paratubercolosis (MAP) which is endemic worldwide. In dairy herds, it is responsible for huge economic losses. However, current diagnostic methods do not detect subclinical infection making control of the disease difficult. The identification of MAP infected animals during the sub-clinical phase of infection would play a key role in preventing the dissemination of the pathogen and in reducing transmission. Gene expression and circulating microRNA (miRNA) signatures have been proposed as biomarkers of disease both in the human and veterinary medicine. In this paper, gene expression and related miRNA levels were investigated in cows positive for MAP, by ELISA and culture, in order to identify potential biomarkers to improve diagnosis of MAP infection. Three groups, each of 5 animals, were used to compare the results of gene expression from positive, exposed and negative cows. Overall 258 differentially expressed genes were identified between unexposed, exposed, but ELISA negative and positive groups which were involved in biological functions related to inflammatory response, lipid metabolism and small molecule biochemistry. Differentially expressed miRNA was also found among the three groups: 7 miRNAs were at a lower level and 2 at a higher level in positive animals vs unexposed animals, while 5 and 3 miRNAs were respectively reduced and increased in the exposed group compared to the unexposed group. Among the differentially expressed miRNAs 6 have been previously described as immune-response related and two were novel miRNAs. Analysis of the miRNA levels showed correlation with expression of their target genes, known to be involved in the immune process. This study suggests that miRNA expression is affected by MAP infection and play a key role in tuning the host response to infection. The miRNA and gene expression profiles may be biomarkers of infection and potential diagnostic of MAP infection earlier than the current ELISA based diagnostic tests.