Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Clin Microbiol ; 59(8): e0056421, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33980652

RESUMEN

According to the WHO, 75% of the world's plague cases are found in Madagascar, with an average of 200 to 700 cases suspected annually (mainly bubonic plague). In 2017, a pneumonic plague epidemic of unusual proportions occurred, which raised several challenges for laboratory confirmation of cases, pointing to the need for the development of Yersinia pestis isolation procedures, especially those that can be performed in remote areas. As the WHO gold standard for plague diagnosis is bacterial culture, we sought to develop a simple method to prepare a highly selective medium, fit for use in remote areas where plague is endemic. The performance of the new medium, named improved BIN, was examined in terms of growth support and selectivity with spiked samples as well in isolating Y. pestis from clinical specimens, and it was compared to the results obtained with commercially available selective media. The preparation of the new medium is less complex and its performance was found to be superior to that of first-generation BIN medium. The growth support of the medium is higher, there is no batch diversity, and it maintains high selectivity properties. In 55 clinical specimens obtained from patients suspected to be infected with Y. pestis, approximately 20% more Y. pestis-positive isolates were identified by the improved BIN medium than were identified by commercially available selective media. The improved BIN medium is notably advantageous for the isolation of Y. pestis from clinical specimens obtained from plague patients, thus offering better surveillance tools and proper promotion of medical treatment to more patients suspected of being infected with Y. pestis.


Asunto(s)
Peste , Yersinia pestis , Agar , Medios de Cultivo , Humanos , Madagascar , Peste/diagnóstico , Peste/epidemiología
2.
J Infect Dis ; 220(7): 1147-1151, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31095689

RESUMEN

Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing contagious disease. In the plague mouse model, a single immunization with the EV76 live attenuated Y. pestis strain rapidly induced the expression of hemopexin and haptoglobin in the lung and serum, both of which are important in iron sequestration. Immunization against a concomitant lethal Y. pestis respiratory challenge was correlated with temporary inhibition of disease progression. Combining EV76-immunization and second-line antibiotic treatment, which are individually insufficient, led to a synergistic protective effect that represents a proof of concept for efficient combinational therapy in cases of infection with antibiotic-resistant strains.


Asunto(s)
Antibacterianos/uso terapéutico , Vacunas Bacterianas/uso terapéutico , Ceftriaxona/uso terapéutico , Peste/tratamiento farmacológico , Peste/prevención & control , Profilaxis Posexposición/métodos , Yersinia pestis/inmunología , Animales , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Femenino , Haptoglobinas/análisis , Hemopexina/análisis , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Peste/microbiología , Resultado del Tratamiento , Vacunas Vivas no Atenuadas/inmunología
3.
J Clin Microbiol ; 56(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29386263

RESUMEN

Multiplexed detection technologies are becoming increasingly important given the possibility of bioterrorism attacks, for which the range of suspected pathogens can vary considerably. In this work, we describe the use of Luminex MagPlex magnetic microspheres for the construction of two multiplexed diagnostic suspension arrays, enabling antibody-based detection of bacterial pathogens and their related disease biomarkers directly from blood cultures. The first 4-plex diagnostic array enabled the detection of both anthrax and plague infections using soluble disease biomarkers, including protective antigen (PA) and anthrax capsular antigen for anthrax detection and the capsular F1 and LcrV antigens for plague detection. The limits of detection (LODs) ranged between 0.5 and 5 ng/ml for the different antigens. The second 2-plex diagnostic array facilitated the detection of Yersinia pestis (LOD of 1 × 106 CFU/ml) and Francisella tularensis (LOD of 1 × 104 CFU/ml) from blood cultures. Inoculated, propagated blood cultures were processed (15 to 20 min) via 2 possible methodologies (Vacutainer or a simple centrifugation step), allowing the direct detection of bacteria in each sample, and the entire assay could be performed in 90 min. While detection of bacteria and soluble markers from blood cultures using PCR Luminex suspension arrays has been widely described, to our knowledge, this study is the first to demonstrate the utility of the Luminex system for the immunodetection of both bacteria and soluble markers directly from blood cultures. Targeting both the bacterial pathogens as well as two different disease biomarkers for each infection, we demonstrated the benefit of the multiplexed developed assays for enhanced, reliable detection. The presented arrays could easily be expanded to include antibodies for the detection of other pathogens of interest in hospitals or labs, demonstrating the applicability of this technology for the accurate detection and confirmation of a wide range of potential select agents.


Asunto(s)
Carbunco/diagnóstico , Cultivo de Sangre/métodos , Peste/diagnóstico , Análisis por Matrices de Proteínas/métodos , Tularemia/diagnóstico , Carbunco/sangre , Carbunco/inmunología , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/sangre , Bacillus anthracis/genética , Bacillus anthracis/inmunología , Bacillus anthracis/aislamiento & purificación , Biomarcadores/sangre , Bioterrorismo , Francisella tularensis/genética , Francisella tularensis/inmunología , Francisella tularensis/aislamiento & purificación , Humanos , Imanes , Microesferas , Peste/sangre , Peste/inmunología , Reacción en Cadena de la Polimerasa , Análisis por Matrices de Proteínas/instrumentación , Sensibilidad y Especificidad , Tularemia/sangre , Tularemia/inmunología , Yersinia pestis/genética , Yersinia pestis/inmunología , Yersinia pestis/aislamiento & purificación
4.
PLoS Pathog ; 11(5): e1004893, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25974210

RESUMEN

Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel therapies against this pathogen.


Asunto(s)
Interacciones Huésped-Patógeno , Pulmón/inmunología , Infiltración Neutrófila , Neutrófilos/inmunología , Peste/inmunología , Mucosa Respiratoria/inmunología , Yersinia pestis/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Femenino , Eliminación de Gen , Inmunidad Mucosa , Pulmón/metabolismo , Pulmón/microbiología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Ratones Endogámicos C57BL , Viabilidad Microbiana , Mutación , Neutrófilos/metabolismo , Neutrófilos/microbiología , Fagocitosis , Peste/metabolismo , Peste/microbiología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Análisis de Supervivencia , Virulencia , Yersinia pestis/crecimiento & desarrollo , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidad
5.
J Infect Dis ; 214(6): 970-7, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402776

RESUMEN

BACKGROUND: Plague is initiated by Yersinia pestis, a highly virulent bacterial pathogen. In late stages of the infection, bacteria proliferate extensively in the internal organs despite the massive infiltration of neutrophils. The ineffective inflammatory response associated with tissue damage may contribute to the low efficacy of antiplague therapies during late stages of the infection. In the present study, we address the possibility of improving therapeutic efficacy by combining corticosteroid administration with antibody therapy in the mouse model of bubonic plague. METHODS: Mice were subcutaneously infected with a fully virulent Y. pestis strain and treated at progressive stages of the disease with anti-Y. pestis antibodies alone or in combination with the corticosteroid methylprednisolone. RESULTS: The addition of methylprednisolone to antibody therapy correlated with improved mouse survival, a significant decrease in the amount of neutrophils and matrix metalloproteinase 9 in the tissues, and the mitigation of tissue damage. Interestingly, the combined treatment led to a decrease in the bacterial loads in infected organs. CONCLUSIONS: Corticosteroids induce an unexpectedly effective antibacterial response apart from their antiinflammatory properties, thereby improving treatment efficacy.


Asunto(s)
Anticuerpos Antibacterianos/administración & dosificación , Factores Inmunológicos/administración & dosificación , Metilprednisolona/administración & dosificación , Peste/tratamiento farmacológico , Peste/patología , Animales , Carga Bacteriana , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Pulmón/patología , Ratones , Análisis de Supervivencia , Resultado del Tratamiento
6.
BMC Genom Data ; 25(1): 47, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783201

RESUMEN

OBJECTIVE: Burkholderia pseudomallei, the etiological cause of melioidosis, is a soil saprophyte endemic in South-East Asia, where it constitutes a public health concern of high-priority. Melioidosis cases are sporadically identified in nonendemic areas, usually associated with travelers or import of goods from endemic regions. Due to extensive intercontinental traveling and the anticipated climate change-associated alterations of the soil bacterial flora, there is an increasing concern for inadvertent establishment of novel endemic areas, which may expand the global burden of melioidosis. Rapid diagnosis, isolation and characterization of B. pseudomallei isolates is therefore of utmost importance particularly in non-endemic locations. DATA DESCRIPTION: We report the genome sequences of two novel clinical isolates (MWH2021 and MST2022) of B. pseudomallei identified in distinct acute cases of melioidosis diagnosed in two individuals arriving to Israel from India and Thailand, respectively. The data includes preliminary genetic analysis of the genomes determining their phylogenetic classification in rapport to the genomes of 131 B. pseudomallei strains documented in the NCBI database. Inspection of the genomic data revealed the presence or absence of loci encoding for several documented virulence determinants involved in the molecular pathogenesis of melioidosis. Virulence analysis in murine models of acute or chronic melioidosis established that both strains belong to the highly virulent class of B. pseudomalleii.


Asunto(s)
Burkholderia pseudomallei , Genoma Bacteriano , Melioidosis , Filogenia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Burkholderia pseudomallei/patogenicidad , Melioidosis/microbiología , Melioidosis/epidemiología , Tailandia/epidemiología , Humanos , Genoma Bacteriano/genética , India , Animales , Israel/epidemiología , Virulencia/genética , Ratones , Secuenciación Completa del Genoma
7.
Microorganisms ; 11(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37512874

RESUMEN

The emergence of antibiotic-resistant bacteria is a pressing public health concern, highlighting the need for alternative approaches to control bacterial infections. Promising approaches include the development of therapeutic vaccines and the utilization of innate immune activation techniques, which may prove useful in conjunction with antibiotics, as well as other antibacterial modalities. However, innate activation should be fast and self- or actively- contained to prevent detrimental consequences. TLR ligand adjuvants are effective at rapidly activating, within minutes to hours, the innate immune system by inducing cytokine production and other signaling molecules that bolster the host's immune response. Neutrophils serve as the first line of defense against invading pathogens by capturing and destroying them through various mechanisms, such as phagocytosis, intracellular degradation, and the formation of NETs. Nutritional immunity is another host defense mechanism that limits the availability of essential metals, such as iron, from invading bacterial pathogens. Thus, iron starvation has been proposed as a potential antibacterial strategy. In this review, we focus on approaches that have the potential to enhance rapid and precise antibacterial responses, bridging the gap between the onset of infection and the elimination of bacteria, hence limiting the infection by antibiotic-resistant bacteria.

8.
Vaccines (Basel) ; 11(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36992165

RESUMEN

In a recent study, we demonstrated that vaccination with the polymeric F1 capsule antigen of the plague pathogen Yersinia pestis led to the rapid induction of a protective humoral immune response via the pivotal activation of innate-like B1b cells. Conversely, the monomeric version of F1 failed to promptly protect vaccinated animals in this model of the bubonic plague. In this study, we examined the ability of F1 to confer the rapid onset of protective immunity in the more challenging mouse model of the pneumonic plague. Vaccination with one dose of F1 adsorbed on aluminum hydroxide elicited effective protection against subsequent lethal intranasal exposure to a fully virulent Y. pestis strain within a week. Interestingly, the addition of the LcrV antigen shortened the time required for achieving such rapid protective immunity to 4-5 days after vaccination. As found previously, the polymeric structure of F1 was essential in affording the accelerated protective response observed by covaccination with LcrV. Finally, in a longevity study, a single vaccination with polymeric F1 induced a higher and more uniform humoral response than a similar vaccination with monomeric F1. However, in this setting, the dominant contribution of LcrV to long-lasting immunity against a lethal pulmonary challenge was reiterated.

9.
Sci Adv ; 9(10): eadg1036, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36888708

RESUMEN

Messenger RNA (mRNA) lipid nanoparticle (LNP) vaccines have emerged as an effective vaccination strategy. Although currently applied toward viral pathogens, data concerning the platform's effectiveness against bacterial pathogens are limited. Here, we developed an effective mRNA-LNP vaccine against a lethal bacterial pathogen by optimizing mRNA payload guanine and cytosine content and antigen design. We designed a nucleoside-modified mRNA-LNP vaccine based on the bacterial F1 capsule antigen, a major protective component of Yersinia pestis, the etiological agent of plague. Plague is a rapidly deteriorating contagious disease that has killed millions of people during the history of humankind. Now, the disease is treated effectively with antibiotics; however, in the case of a multiple-antibiotic-resistant strain outbreak, alternative countermeasures are required. Our mRNA-LNP vaccine elicited humoral and cellular immunological responses in C57BL/6 mice and conferred rapid, full protection against lethal Y. pestis infection after a single dose. These data open avenues for urgently needed effective antibacterial vaccines.


Asunto(s)
Vacuna contra la Peste , Peste , Yersinia pestis , Ratones , Animales , Peste/prevención & control , Vacuna contra la Peste/genética , Proteínas Bacterianas/genética , Ratones Endogámicos C57BL , Yersinia pestis/genética , Antígenos Bacterianos/genética
10.
Microbiol Spectr ; 10(5): e0241522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36190401

RESUMEN

The life-threatening disease tularemia is caused by Francisella tularensis, an intracellular Gram-negative bacterial pathogen. Due to the high mortality rates of the disease, as well as the low respiratory infectious dose, F. tularensis is categorized as a Tier 1 bioterror agent. The identification and isolation from clinical blood cultures of F. tularensis are complicated by its slow growth. Iron was shown to be one of the limiting nutrients required for F. tularensis metabolism and growth. Bacterial growth was shown to be restricted or enhanced in the absence or addition of iron. In this study, we tested the beneficial effect of enhanced iron concentrations on expediting F. tularensis blood culture diagnostics. Accordingly, bacterial growth rates in blood cultures with or without Fe2+ supplementation were evaluated. Growth quantification by direct CFU counts demonstrated significant improvement of growth rates of up to 6 orders of magnitude in Fe2+-supplemented media compared to the corresponding nonmodified cultures. Fe2+ supplementation significantly shortened incubation periods for successful diagnosis and isolation of F. tularensis by up to 92 h. This was achieved in a variety of blood culture types in spite of a low initial bacterial inoculum representative of low levels of bacteremia. These improvements were demonstrated with culture of either Francisella tularensis subsp. tularensis or subsp. holarctica in all examined commercial blood culture types routinely used in a clinical setup. Finally, essential downstream identification assays, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), immunofluorescence, or antibiotic susceptibility tests, were not affected in the presence of Fe2+. To conclude, supplementing blood cultures with Fe2+ enables a significant shortening of incubation times for F. tularensis diagnosis, without affecting subsequent identification or isolation assays. IMPORTANCE In this study, we evaluated bacterial growth rates of Francisella tularensis strains in iron (Fe)-enriched blood cultures as a means of improving and accelerating bacterial growth. The shortening of the culturing time should facilitate rapid pathogen detection and isolation, positively impacting clinical diagnosis and enabling prompt onset of efficient therapy.


Asunto(s)
Francisella tularensis , Tularemia , Humanos , Francisella tularensis/metabolismo , Cultivo de Sangre , Tularemia/diagnóstico , Tularemia/metabolismo , Tularemia/microbiología , Hierro/metabolismo , Antibacterianos/farmacología
11.
Pathogens ; 11(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35215198

RESUMEN

Plague, caused by the human pathogen Yersinia pestis, is a severe and rapidly progressing lethal disease that has caused millions of deaths globally throughout human history and still presents a significant public health concern, mainly in developing countries. Owing to the possibility of its malicious use as a bio-threat agent, Y. pestis is classified as a tier-1 select agent. The prompt administration of an effective antimicrobial therapy, essential for a favorable patient prognosis, requires early pathogen detection, identification and isolation. Although the disease rapidly progresses and the pathogen replicates at high rates within the host, Y. pestis exhibits a slow growth in vitro under routinely employed clinical culturing conditions, complicating the diagnosis and isolation. In the current study, the in vitro bacterial growth in blood cultures was accelerated by the addition of nutritional supplements. We report the ability of calcium (Ca+2)- and iron (Fe+2)-enriched aerobic blood culture media to expedite the growth of various virulent Y. pestis strains. Using a supplemented blood culture, a shortening of the doubling time from ~110 min to ~45 min could be achieved, resulting in increase of 5 order of magnitude in the bacterial loads within 24 h of incubation, consequently allowing the rapid detection and isolation of the slow growing Y. pestis bacteria. In addition, the aerobic and anaerobic blood culture bottles used in clinical set-up were compared for a Y. pestis culture in the presence of Ca+2 and Fe+2. The comparison established the superiority of the supplemented aerobic cultures for an early detection and achieved a significant increase in the yields of the pathogen. In line with the accelerated bacterial growth rates, the specific diagnostic markers F1 and LcrV (V) antigens could be directly detected significantly earlier. Downstream identification employing MALDI-TOF and immunofluorescence assays were performed directly from the inoculated supplemented blood culture, resulting in an increased sensitivity and without any detectable compromise of the accuracy of the antibiotic susceptibility testing (E-test), critical for subsequent successful therapeutic interventions.

12.
Viruses ; 14(4)2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35458417

RESUMEN

Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals-a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Peste , Yersinia pestis , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Peste/tratamiento farmacológico
13.
Front Bioeng Biotechnol ; 10: 905557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017344

RESUMEN

Recent advances in the field of cell therapy have proposed new solutions for tissue repair and regeneration using various cell delivery approaches. Here we studied ex vivo a novel topical delivery system of encapsulated cells in hybrid polyethylene glycol-fibrinogen (PEG-Fb) hydrogel microspheres to respiratory tract models. We investigated basic parameters of cell encapsulation, delivery and release in conditions of inflamed and damaged lungs of bacterial-infected mice. The establishment of each step in the study was essential for the proof of concept. We demonstrated co-encapsulation of alveolar macrophages and epithelial cells that were highly viable and equally distributed inside the microspheres. We found that encapsulated macrophages exposed to bacterial endotoxin lipopolysaccharide preserved high viability and secreted moderate levels of TNFα, whereas non-encapsulated cells exhibited a burst TNFα secretion and reduced viability. LPS-exposed encapsulated macrophages exhibited elongated morphology and out-migration capability from microspheres. Microsphere degradation and cell release in inflamed lung environment was studied ex vivo by the incubation of encapsulated macrophages with lung extracts derived from intranasally infected mice with Yersinia pestis, demonstrating the potential in cell targeting and release in inflamed lungs. Finally, we demonstrated microsphere delivery to a multi-component airways-on-chip platform that mimic human nasal, bronchial and alveolar airways in serially connected compartments. This study demonstrates the feasibility in using hydrogel microspheres as an effective method for topical cell delivery to the lungs in the context of pulmonary damage and the need for tissue repair.

14.
Viruses ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893698

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 infection induced lung inflammation characterized by cytokine storm and fulminant immune response of both resident and migrated immune cells, accelerating alveolar damage. In this work we identified members of the matrix metalloprotease (MMPs) family associated with lung extra-cellular matrix (ECM) destruction using K18-hACE2-transgenic mice (K18-hACE2) infected intranasally with SARS-CoV-2. Five days post infection, the lungs exhibited overall alveolar damage of epithelial cells and massive leukocytes infiltration. A substantial pulmonary increase in MMP8, MMP9, and MMP14 in the lungs post SARS-CoV-2 infection was associated with degradation of ECM components including collagen, laminin, and proteoglycans. The process of tissue damage and ECM degradation during SARS-CoV-2 lung infection is suggested to be associated with activity of members of the MMPs family, which in turn may be used as a therapeutic intervention.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Melfalán , Ratones , Ratones Transgénicos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , gammaglobulinas
15.
Antibiotics (Basel) ; 10(1)2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401634

RESUMEN

Yersinia pestis is a Gram-negative pathogen that causes plague, a devastating disease that kills millions worldwide. Although plague is efficiently treatable by recommended antibiotics, the time of antibiotic therapy initiation is critical, as high mortality rates have been observed if treatment is delayed for longer than 24 h after symptom onset. To overcome the emergence of antibiotic resistant strains, we attempted a systematic screening of Food and Drug Administration (FDA)-approved drugs to identify alternative compounds which may possess antibacterial activity against Y. pestis. Here, we describe a drug-repurposing approach, which led to the identification of two antibiotic-like activities of the anticancer drugs bleomycin sulfate and streptozocin that have the potential for designing novel antiplague therapy approaches. The inhibitory characteristics of these two drugs were further addressed as well as their efficiency in affecting the growth of Y. pestis strains resistant to doxycycline and ciprofloxacin, antibiotics recommended for plague treatment.

16.
Microorganisms ; 9(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208306

RESUMEN

Pneumonic plague is a lethal infectious disease caused by Yersinia pestis, a Tier-1 biothreat agent. Antibiotic treatment can save infected patients; however, therapy should begin within 24 h of symptom onset. As some Y. pestis strains showed an antibiotic resistance phenotype, an antibiotic susceptibility test (AST) must be performed. Performing the Clinical and Laboratory Standards Institute (CLSI)-recommended standard process, which includes bacterial isolation, enumeration and microdilution testing, lasts several days. Thus, rapid AST must be developed. As previously published, the Y. pestis-specific reporter phage ϕA1122::luxAB can serve for rapid identification and AST (ID-AST). Herein, we demonstrate the ability to use ϕA1122::luxAB to determine minimal inhibitory concentration (MIC) values and antibiotic susceptibility categories for various Y. pestis therapeutic antibiotics. We confirmed the assay by testing several nonvirulent Y. pestis isolates with reduced susceptibility to doxycycline or ciprofloxacin. Moreover, the assay can be performed directly on positive human blood cultures. Furthermore, as Y. pestis may naturally or deliberately be spread in the environment, we demonstrate the compatibility of this direct method for this scenario. This direct phage-based ID-AST shortens the time needed for standard AST to less than a day, enabling rapid and correct treatment, which may also prevent the spread of the disease.

17.
Viruses ; 13(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440682

RESUMEN

The global increase in multidrug-resistant (MDR) pathogenic bacteria has led to growing interest in bacteriophage ("phage") therapy. Therapeutic phages are usually selected based on their ability to infect and lyse target bacteria, using in vitro assays. In these assays, phage infection is determined using target bacteria grown in standard commercial rich media, while evaluation of the actual therapeutic activity requires the presence of human blood. In the present work, we characterized the ability of two different Yersinia pestis lytic phages (ϕA1122 and PST) to infect and kill a luminescent Y. pestis EV76 strain suspended in Brain Heart Infusion (BHI)-rich medium or in human whole blood, simulating the host environment. We found that the ability of the phages to infect and lyse blood-suspended Y. pestis was not correlated with their ability to infect and lyse BHI-suspended bacteria. While the two different phages exhibited efficient infective capacity in a BHI-suspended culture, only the PST phage showed efficient lysis ability against blood-suspended bacteria. Therefore, we recommend that for personalized phage therapy, selection of phage(s) for efficient treatment of patients suffering from MDR bacterial infections should include prior testing of the candidate phage(s) for their lysis ability in the presence of human blood.


Asunto(s)
Bacteriólisis , Bacteriófagos/fisiología , Terapia de Fagos , Peste/virología , Yersinia pestis/virología , Humanos , Peste/terapia , Medicina de Precisión , Carga Viral
18.
Pathogens ; 10(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801490

RESUMEN

Mouse monoclonal antibodies were raised against plague disease biomarkers: the bacterial capsular protein fraction 1 (F1) and the low-calcium response-LcrV virulence factor (Vag). A novel tandem assay, employing BioLayer Interferometry (BLI), enabled the isolation of antibodies against four different epitopes on Vag. The tandem assay was carried out with hybridoma supernatants, circumventing the need for antibody purification. The BioLayer assay was further adopted for characterization of epitope-repetitive antigens, enabling the discovery of two unique epitopes on F1. The selected antibodies were purified and applied as "oligo-clonal" reagents for the immuno-detection of both biomarkers. The developed Homogenous Time Resolved Fluorescence (HTRF) tests were short (10 min) and simple (no washing steps), allowing for detection of 10 ng/mL F1 and 2.5 ng/mL Vag. The tests were successfully applied for detection of disease biomarkers produced by various Y. pestis strains during growth in blood culture vials.

19.
Microorganisms ; 9(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068310

RESUMEN

Rapid determination of bacterial antibiotic susceptibility is important for proper treatment of infections. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) has recently published guidelines for rapid antimicrobial susceptibility testing (RAST) performed directly from positive blood culture vials. These guidelines, however, were only published for a limited number of common pathogenic bacteria. In this study, we evaluated the applicability of these guidelines to three Tier 1 bioterror agents (Bacillus anthracis, Yersinia pestis and Francisella tularensis) that require prompt antibiotic treatment to mitigate morbidity and mortality. We used spiked-in human blood incubated in a BACTEC™ FX40 system to determine the proper conditions for RAST using disc-diffusion and Etest assays. We found that reliable disc-diffusion inhibition diameters and Etest MIC values could be obtained in remarkably short times. Compared to the EUCAST-recommended disc-diffusion assays that will require adjusted clinical breakpoint tables, Etest-based RAST was advantageous, as the obtained MIC values were similar to the standard MIC values, enabling the use of established category breakpoint tables. Our results demonstrate the promising applicability of the EUCAST RAST for B. anthracis-, Y. pestis- or F. tularensis-positive blood cultures, which can lead to shorter diagnostics and prompt antibiotic treatment of these dangerous pathogens.

20.
Microorganisms ; 9(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34683487

RESUMEN

Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing lethal infection. The various phases of pneumonic plague are yet to be fully understood. A well-established way to address the pathology of infectious diseases in general, and pneumonic plague in particular, is to conduct concomitant transcriptomic analysis of the bacteria and the host. The analysis of dual RNA by RNA sequencing technology is challenging, due the difficulties of extracting bacterial RNA, which is overwhelmingly outnumbered by the host RNA, especially at the critical early time points post-infection (prior to 48 h). Here, we describe a novel technique that employed the infusion of an RNA preserving reagent (RNAlater) into the lungs of the animals, through the trachea, under deep anesthesia. This method enabled the isolation of stable dual mRNA from the lungs of mice infected with Y. pestis, as early as 24 h post-infection. The RNA was used for transcriptomic analysis, which provided a comprehensive gene expression profile of both the host and the pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA