Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104978, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390987

RESUMEN

The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind ß2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for ß2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the ß2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking ß2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by ß2 integrins.


Asunto(s)
Toxina de Adenilato Ciclasa , Antígenos CD18 , Triptófano , Toxina de Adenilato Ciclasa/química , Toxina de Adenilato Ciclasa/genética , Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis , Antígenos CD18/genética , Antígenos CD18/metabolismo , Membrana Celular/metabolismo , Eritrocitos/metabolismo , Triptófano/química , Triptófano/genética , Triptófano/metabolismo , Secuencia Conservada
2.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698660

RESUMEN

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Asunto(s)
Mapeo Epitopo , Receptor ErbB-2 , Trastuzumab , Humanos , Mapeo Epitopo/métodos , Receptor ErbB-2/química , Receptor ErbB-2/inmunología , Trastuzumab/química , Alquilación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Halogenación , Huella de Proteína/métodos , Complejo Antígeno-Anticuerpo/química
3.
Nat Methods ; 16(7): 595-602, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249422

RESUMEN

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Análisis de Datos , Concentración de Iones de Hidrógeno
4.
Arch Biochem Biophys ; 729: 109392, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36096178

RESUMEN

Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona) , Neoplasias , Antioxidantes/metabolismo , Flavina-Adenina Dinucleótido/química , Flavoproteínas/metabolismo , Humanos , Mutación , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neoplasias/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica
5.
J Biol Chem ; 295(27): 8928-8944, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32371396

RESUMEN

Translocase of outer mitochondrial membrane 34 (TOMM34) orchestrates heat shock protein 70 (HSP70)/HSP90-mediated transport of mitochondrial precursor proteins. Here, using in vitro phosphorylation and refolding assays, analytical size-exclusion chromatography, and hydrogen/deuterium exchange MS, we found that TOMM34 associates with 14-3-3 proteins after its phosphorylation by protein kinase A (PKA). PKA preferentially targeted two serine residues in TOMM34: Ser93 and Ser160, located in the tetratricopeptide repeat 1 (TPR1) domain and the interdomain linker, respectively. Both of these residues were necessary for efficient 14-3-3 protein binding. We determined that phosphorylation-induced structural changes in TOMM34 are further augmented by binding to 14-3-3, leading to destabilization of TOMM34's secondary structure. We also observed that this interaction with 14-3-3 occludes the TOMM34 interaction interface with ATP-bound HSP70 dimers, which leaves them intact and thereby eliminates an inhibitory effect of TOMM34 on HSP70-mediated refolding in vitro In contrast, we noted that TOMM34 in complex with 14-3-3 could bind HSP90. Both TOMM34 and 14-3-3 participated in cytosolic precursor protein transport mediated by the coordinated activities of HSP70 and HSP90. Our results provide important insights into how PKA-mediated phosphorylation and 14-3-3 binding regulate the availability of TOMM34 for its interaction with HSP70.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilación/fisiología , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
FASEB J ; 34(8): 9925-9940, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32725932

RESUMEN

The human chloride intracellular channel (hCLIC) family is thought to transition between globular and membrane-associated forms by exposure of a hydrophobic surface. However, the molecular identity of this surface, and the triggering events leading to its exposure, remain elusive. Here, by combining biochemical and structural approaches, together with mass spectrometry (MS) analyses, we show that hCLIC5 is inherently flexible. X-ray crystallography revealed the existence of a globular conformation, while small-angle X-ray scattering showed additional elongated forms consisting of exposure of the conserved hydrophobic inter-domain interface to the bulk phase. Tryptophan fluorescence measurements demonstrated that the transition to the membrane-associated form is enhanced by the presence of oxidative environment and lipids. Using MS, we identified a dose-dependent oxidation of a highly conserved cysteine residue, known to play a key role in the structurally related omega-class of glutathione-S-transferases. Hydrogen/deuterium exchange MS analysis revealed that oxidation of this cysteine facilitates the exposure of the conserved hydrophobic inter-domain interface. Together, our results pinpoint an oxidation of a specific cysteine residue as a triggering mechanism initializing the molecular commitment for membrane interaction in the CLIC family.


Asunto(s)
Membrana Celular/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Cisteína/química , Cisteína/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
7.
Mol Cell Proteomics ; 18(2): 320-337, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30459217

RESUMEN

Eukaryotic protein homeostasis (proteostasis) is largely dependent on the action of highly conserved Hsp70 molecular chaperones. Recent evidence indicates that, apart from conserved molecular allostery, Hsp70 proteins have retained and adapted the ability to assemble as functionally relevant ATP-bound dimers throughout evolution. Here, we have compared the ATP-dependent dimerization of DnaK, human stress-inducible Hsp70, Hsc70 and BiP Hsp70 proteins, showing that their dimerization propensities differ, with stress-inducible Hsp70 being predominantly dimeric in the presence of ATP. Structural analyses using hydrogen/deuterium exchange mass spectrometry, native electrospray ionization mass spectrometry and small-angle X-ray scattering revealed that stress-inducible Hsp70 assembles in solution as an antiparallel dimer with the intermolecular interface closely resembling the ATP-bound dimer interfaces captured in DnaK and BiP crystal structures. ATP-dependent dimerization of stress-inducible Hsp70 is necessary for its efficient interaction with Hsp40, as shown by experiments with dimerization-deficient mutants. Moreover, dimerization of ATP-bound Hsp70 is required for its participation in high molecular weight protein complexes detected ex vivo, supporting its functional role in vivo As human cytosolic Hsp70 can interact with tetratricopeptide repeat (TPR) domain containing cochaperones, we tested the interaction of Hsp70 ATP-dependent dimers with Chip and Tomm34 cochaperones. Although Chip associates with intact Hsp70 dimers to form a larger complex, binding of Tomm34 disrupts the Hsp70 dimer and this event plays an important role in Hsp70 activity regulation. In summary, this study provides structural evidence of robust ATP-dependent antiparallel dimerization of human inducible Hsp70 protein and suggests a novel role of TPR domain cochaperones in multichaperone complexes involving Hsp70 ATP-bound dimers.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Estrés Fisiológico
8.
J Am Chem Soc ; 142(7): 3440-3448, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31944685

RESUMEN

Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum-sensing molecule hormaomycin, and antimicrobial griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of l-tyrosine- or l-leucine-derived 4-alkyl-l-proline derivatives (APDs) in their structures. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Δ1-pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. Furthermore, the differences in the reaction specificity of the Apd6 reductases determine the formation of the fully saturated APD moiety of lincomycin versus the unsaturated APD moiety of PBDs, providing molecules with optimal shapes to bind their distinct biological targets. Moreover, the Apd6 reductases establish the first F420H2-dependent enzymes from the luciferase-like hydride transferase protein superfamily in the biosynthesis of bioactive molecules. Finally, our bioinformatics analysis demonstrates that Apd6 and their homologues, widely distributed within several bacterial phyla, play a role in the formation of novel yet unknown natural products with incorporated l-proline-like precursors and likely in the microbial central metabolism.


Asunto(s)
Benzodiazepinas/metabolismo , Lincomicina/biosíntesis , Oxidorreductasas/metabolismo , Pirroles/metabolismo , Benzodiazepinas/química , Benzodiazepinas/farmacología , Catálisis , Depsipéptidos/biosíntesis , Depsipéptidos/química , Depsipéptidos/farmacología , Lincomicina/química , Lincomicina/farmacología , Modelos Moleculares , Oxidorreductasas/química , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Prolina/análogos & derivados , Prolina/metabolismo , Pirroles/química , Pirroles/farmacología , Riboflavina/análogos & derivados , Riboflavina/química , Riboflavina/metabolismo , Especificidad por Sustrato , Tirosina/análogos & derivados , Tirosina/metabolismo
9.
Anal Chem ; 91(17): 10970-10978, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31408320

RESUMEN

Insight into the structure-function relationship of membrane proteins is important to understand basic cell function and inform drug development, as these are common targets for drugs. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is an established technique for the study of protein conformational dynamics and has shown compatibility with membrane proteins. However, the digestion and mass analysis of peptides from membrane proteins can be challenging, severely limiting the HDX-MS experiment. Here we compare the digestion of four integral membrane proteins-Cl-/H+ exchange transporter (ClC-ec1), leucine transporter (LeuT), dopamine transporter (DAT), and serotonin transporter (SERT)-by the use of porcine pepsin and three alternative aspartic proteases either in-solution or immobilized on-column in an optimized HDX-MS-compatible workflow. Pepsin was the most favorable for the digestion of ClC-ec1 and LeuT, providing coverage of 82.2 and 33.2% of the respective protein sequence; however, the alternative proteases surpassed pepsin for the digestion of DAT and SERT. By also screening quench solution additives, we observe that the denaturant urea was beneficial, resulting in improved sequence coverage of all membrane proteins, in contrast to guanidine hydrochloride. Furthermore, significant improvements in sequence coverage were achieved by tailoring the chromatography to handle hydrophobic peptides. Overall, we demonstrate that the susceptibility of membrane proteins to proteolytic digestion during HDX-MS is highly protein-specific. Our results highlight the importance of having multiple proteases and different quench buffer additives in the HDX-MS toolbox and the need to carefully screen a range of digestion conditions to successfully optimize the HDX-MS analysis of integral membrane proteins.


Asunto(s)
Antiportadores/análisis , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/análisis , Proteínas de Drosophila/análisis , Proteínas de Escherichia coli/análisis , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Fragmentos de Péptidos/análisis , Proteínas de Transporte de Serotonina en la Membrana Plasmática/análisis , Secuencia de Aminoácidos , Animales , Antiportadores/química , Aquifex , Proteasas de Ácido Aspártico/química , Bacterias , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Drosophila/química , Drosophila melanogaster , Escherichia coli , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Pepsina A/química , Proteolisis , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Relación Estructura-Actividad , Porcinos , Urea/química
10.
Mol Cell Proteomics ; 16(6): 1162-1171, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28404794

RESUMEN

Trypsin dominates bottom-up proteomics, but there are reasons to consider alternative enzymes. Improving sequence coverage, exposing proteomic "dark matter," and clustering post-translational modifications in different ways and with higher-order drive the pursuit of reagents complementary to trypsin. Additionally, enzymes that are easy to use and generate larger peptides that capitalize upon newer fragmentation technologies should have a place in proteomics. We expressed and characterized recombinant neprosin, a novel prolyl endoprotease of the DUF239 family, which preferentially cleaves C-terminal to proline residues under highly acidic conditions. Cleavage also occurs C-terminal to alanine with some frequency, but with an intriguingly high "skipping rate." Digestion proceeds to a stable end point, resulting in an average peptide mass of 2521 units and a higher dependence upon electron-transfer dissociation for peptide-spectrum matches. In contrast to most proline-cleaving enzymes, neprosin effectively degrades proteins of any size. For 1251 HeLa cell proteins identified in common using trypsin, Lys-C, and neprosin, almost 50% of the neprosin sequence contribution is unique. The high average peptide mass coupled with cleavage at residues not usually modified provide new opportunities for profiling clusters of post-translational modifications. We show that neprosin is a useful reagent for reading epigenetic marks on histones. It generates peptide 1-38 of histone H3 and peptide 1-32 of histone H4 in a single digest, permitting the analysis of co-occurring post-translational modifications in these important N-terminal tails.


Asunto(s)
Histonas/metabolismo , Proteómica/métodos , Células HeLa , Histonas/química , Humanos , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo
11.
J Biol Chem ; 292(29): 12311-12323, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28572509

RESUMEN

Na+/Ca2+ exchanger (NCX) proteins operate through the alternating access mechanism, where the ion-binding pocket is exposed in succession either to the extracellular or the intracellular face of the membrane. The archaeal NCX_Mj (Methanococcus jannaschii NCX) system was used to resolve the backbone dynamics in the inward-facing (IF) and outward-facing (OF) states by analyzing purified preparations of apo- and ion-bound forms of NCX_Mj-WT and its mutant, NCX_Mj-5L6-8. First, the exposure of extracellular and cytosolic vestibules to the bulk phase was evaluated as the reactivity of single cysteine mutants to a fluorescent probe, verifying that NCX_Mj-WT and NCX_Mj-5L6-8 preferentially adopt the OF and IF states, respectively. Next, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) was employed to analyze the backbone dynamics profiles in proteins, preferentially adopting the OF (WT) and IF (5L6-8) states either in the presence or absence of ions. Characteristic differences in the backbone dynamics were identified between apo NCX_Mj-WT and NCX_Mj-5L6-8, thereby underscoring specific conformational patterns owned by the OF and IF states. Saturating concentrations of Na+ or Ca2+ specifically modify HDX patterns, revealing that the ion-bound/occluded states are much more stable (rigid) in the OF than in the IF state. Conformational differences observed in the ion-occluded OF and IF states can account for diversifying the ion-release dynamics and apparent affinity (Km ) at opposite sides of the membrane, where specific structure-dynamic elements can effectively match the rates of bidirectional ion movements at physiological ion concentrations.


Asunto(s)
Proteínas Arqueales/química , Calcio/metabolismo , Membrana Celular/química , Methanocaldococcus/metabolismo , Modelos Moleculares , Intercambiador de Sodio-Calcio/química , Sodio/metabolismo , Sustitución de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Biología Computacional , Cisteína/química , Medición de Intercambio de Deuterio , Cinética , Ligandos , Mutagénesis Insercional , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo
12.
J Biol Chem ; 292(51): 20921-20935, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29092908

RESUMEN

The heme-based oxygen sensor histidine kinase AfGcHK is part of a two-component signal transduction system in bacteria. O2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH- and -CN- complexes of AfGcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN- and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length AfGcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of AfGcHK. We conclude that AfGcHK functions as an ensemble of molecules sampling at least two conformational states.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemo/química , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Compuestos Férricos/química , Compuestos Ferrosos/química , Espectrometría de Masas , Modelos Moleculares , Myxococcales/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fosforilación , Dominios Proteicos , Estructura Cuaternaria de Proteína , Transducción de Señal
13.
Anal Chem ; 90(2): 1104-1113, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29232109

RESUMEN

Chemical cross-linking coupled with mass spectrometry is a popular technique for deriving structural information on proteins and protein complexes. Also, cross-linking has become a powerful tool for stabilizing macromolecular complexes for single-particle cryo-electron microscopy. However, an effect of cross-linking on protein structure and function should not be forgotten, and surprisingly, it has not been investigated in detail so far. Here, we used kinetic studies, mass spectrometry, and NMR spectroscopy to systematically investigate an impact of cross-linking on structure and function of human carbonic anhydrase and alcohol dehydrogenase 1 from Saccharomyces cerevisiae. We found that cross-linking induces rather local structural disturbances and the overall fold is preserved even at a higher cross-linker concentration. The results establish general experimental conditions for chemical cross-linking with minimal effect on protein structure and function.


Asunto(s)
Alcohol Deshidrogenasa/química , Anhidrasas Carbónicas/química , Reactivos de Enlaces Cruzados/química , Humanos , Espectrometría de Masas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína
14.
Mol Cell Proteomics ; 15(5): 1710-27, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26944342

RESUMEN

Co-chaperones containing tetratricopeptide repeat (TPR) domains enable cooperation between Hsp70 and Hsp90 to maintain cellular proteostasis. Although the details of the molecular interactions between some TPR domains and heat shock proteins are known, we describe a novel mechanism by which Tomm34 interacts with and coordinates Hsp70 activities. In contrast to the previously defined Hsp70/Hsp90-organizing protein (Hop), Tomm34 interaction is dependent on the Hsp70 chaperone cycle. Tomm34 binds Hsp70 in a complex process; anchorage of the Hsp70 C terminus by the TPR1 domain is accompanied by additional contacts formed exclusively in the ATP-bound state of Hsp70 resulting in a high affinity entropically driven interaction. Tomm34 induces structural changes in determinants within the Hsp70-lid subdomain and modulates Hsp70/Hsp40-mediated refolding and Hsp40-stimulated Hsp70 ATPase activity. Because Tomm34 recruits Hsp90 through its TPR2 domain, we propose a model in which Tomm34 enables Hsp70/Hsp90 scaffolding and influences the Hsp70 chaperone cycle, providing an additional role for co-chaperones that contain multiple TPR domains in regulating protein homeostasis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
15.
Biophys J ; 112(7): 1339-1349, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28402877

RESUMEN

Phosducin (Pdc) is a conserved phosphoprotein that, when unphosphorylated, binds with high affinity to the complex of ßγ-subunits of G protein transducin (Gtßγ). The ability of Pdc to bind to Gtßγ is inhibited through its phosphorylation at S54 and S73 within the N-terminal domain (Pdc-ND) followed by association with the scaffolding protein 14-3-3. However, the molecular basis for the 14-3-3-dependent inhibition of Pdc binding to Gtßγ is unclear. By using small-angle x-ray scattering, high-resolution NMR spectroscopy, and limited proteolysis coupled with mass spectrometry, we show that phosphorylated Pdc and 14-3-3 form a complex in which the Pdc-ND region 45-80, which forms a part of Pdc's Gtßγ binding surface and contains both phosphorylation sites, is restrained within the central channel of the 14-3-3 dimer, with both 14-3-3 binding motifs simultaneously participating in protein association. The N-terminal part of Pdc-ND is likely located outside the central channel of the 14-3-3 dimer, but Pdc residues 20-30, which are also involved in Gtßγ binding, are positioned close to the surface of the 14-3-3 dimer. The C-terminal domain of Pdc is located outside the central channel and its structure is unaffected by the complex formation. These results indicate that the 14-3-3 protein-mediated inhibition of Pdc binding to Gtßγ is based on steric occlusion of Pdc's Gtßγ binding surface.


Asunto(s)
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/química , Reguladores de Proteínas de Unión al GTP/antagonistas & inhibidores , Reguladores de Proteínas de Unión al GTP/química , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/química , Animales , Fosforilación , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteolisis , Espectroscopía de Protones por Resonancia Magnética , Ratas , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X
16.
J Biol Chem ; 291(39): 20753-65, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27514745

RESUMEN

Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, regulates diverse physiological processes. The activity of ASK1 is triggered by various stress stimuli and is involved in the pathogenesis of cancer, neurodegeneration, inflammation, and diabetes. ASK1 forms a high molecular mass complex whose activity is, under non-stress conditions, suppressed through interaction with thioredoxin and the scaffolding protein 14-3-3. The 14-3-3 protein binds to the phosphorylated Ser-966 motif downstream of the ASK1 kinase domain. The role of 14-3-3 in the inhibition of ASK1 has yet to be elucidated. In this study we performed structural analysis of the complex between the ASK1 kinase domain phosphorylated at Ser-966 (pASK1-CD) and the 14-3-3ζ protein. Small angle x-ray scattering (SAXS) measurements and chemical cross-linking revealed that the pASK1-CD·14-3-3ζ complex is dynamic and conformationally heterogeneous. In addition, structural analysis coupled with the results of phosphorus NMR and time-resolved tryptophan fluorescence measurements suggest that 14-3-3ζ interacts with the kinase domain of ASK1 in close proximity to its active site, thus indicating this interaction might block its accessibility and/or affect its conformation.


Asunto(s)
Proteínas 14-3-3/química , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 5/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Dominio Catalítico , Humanos , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
17.
Biochem Biophys Res Commun ; 493(2): 940-945, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28943433

RESUMEN

Procaspase-2 phosphorylation at several residues prevents its activation and blocks apoptosis. This process involves procaspase-2 phosphorylation at S164 and its binding to the scaffolding protein 14-3-3. However, bioinformatics analysis has suggested that a second phosphoserine-containing motif may also be required for 14-3-3 binding. In this study, we show that human procaspase-2 interaction with 14-3-3 is governed by phosphorylation at both S139 and S164. Using biochemical and biophysical approaches, we show that doubly phosphorylated procaspase-2 and 14-3-3 form an equimolar complex with a dissociation constant in the nanomolar range. Furthermore, our data indicate that other regions of procaspase-2, in addition to phosphorylation motifs, may be involved in the interaction with 14-3-3.


Asunto(s)
Proteínas 14-3-3/metabolismo , Caspasa 2/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Caspasa 2/química , Humanos , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1861(2): 157-167, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27851982

RESUMEN

BACKGROUND: Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. METHODS: To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. RESULTS: HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. CONCLUSIONS: Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. GENERAL SIGNIFICANCE: The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Celobiosa/metabolismo , Transporte de Electrón/fisiología , Secuencia de Aminoácidos , Citocromos/metabolismo , Deuterio/metabolismo , Electrones , Flavinas/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Glicosilación , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Dominios Proteicos , Proteolisis , Electricidad Estática
19.
J Immunol ; 195(7): 3273-83, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320251

RESUMEN

The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLß3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLß3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLß3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLß3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLß3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLß3_D4 has previously been shown to contain the ICAM-1 binding site of DBLß domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1-specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos/inmunología , Molécula 1 de Adhesión Intercelular/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Adhesión Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/parasitología , Epítopos/inmunología , Membrana Eritrocítica/inmunología , Eritrocitos/parasitología , Hibridomas , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
20.
BMC Biol ; 14(1): 91, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27756303

RESUMEN

BACKGROUND: Relapsed acute lymphoblastic leukemia (ALL) is one of the main causes of mortality in childhood malignancies. Previous genetic studies demonstrated that chemoresistant ALL is driven by activating mutations in NT5C2, the gene encoding cytosolic 5´-nucleotidase (cN-II). However, molecular mechanisms underlying this hyperactivation are still unknown. Here, we present kinetic and structural properties of cN-II variants that represent 75 % of mutated alleles in patients who experience relapsed ALL (R367Q, R238W and L375F). RESULTS: Enzyme kinetics measurements revealed that the mutants are consitutively active without need for allosteric activators. This shows that hyperactivity is not caused by a direct catalytic effect but rather by misregulation of cN-II. X-ray crystallography combined with mass spectrometry-based techniques demonstrated that this misregulation is driven by structural modulation of the oligomeric interface within the cN-II homotetrameric assembly. These specific conformational changes are shared between the studied variants, despite the relatively random spatial distribution of the mutations. CONCLUSIONS: These findings define a common molecular mechanism for cN-II hyperactivity, which provides a solid basis for targeted therapy of leukemia. Our study highlights the cN-II oligomerization interface as an attractive pharmacological target.


Asunto(s)
5'-Nucleotidasa/genética , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , 5'-Nucleotidasa/metabolismo , Alelos , Clonación Molecular , Cristalografía por Rayos X , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Conformación Proteica , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA