Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Respir Res ; 24(1): 193, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516840

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) encompasses a group of diseases characterized by raised pulmonary vascular resistance, resulting from vascular remodelling and inflammation. Bromodomain and extra-terminal (BET) proteins are required for the expression of a subset of NF-κB-induced inflammatory genes which can be inhibited by the BET mimic JQ1+. We hypothesised that JQ+ would supress TNFα-driven inflammatory responses in human pulmonary vascular cells from PAH patients. METHODS: Immunohistochemical staining of human peripheral lung tissue (N = 14 PAH and N = 12 non-PAH) was performed for the BET proteins BRD2 and 4. Human pulmonary microvascular endothelial cells (HPMEC) and pulmonary artery smooth muscle cells (HPASMC) from PAH patients (N = 4) and non-PAH controls (N = 4) were stimulated with TNFα in presence or absence of JQ1+ or its inactive isomer JQ1-. IL-6 and -8 mRNA was measured by RT-qPCR and protein levels by ELISA. Chromatin immunoprecipitation analysis was performed using EZ-ChIP™ and NF-κB p65 activation determined using a TransAm kit. MTT assay was used to measure cell viability. RESULTS: Nuclear staining of BRD2 and BRD4 was significantly (p < 0.0001) increased in the lung vascular endothelial and smooth muscle cells from PAH patients compared to controls with normal lung function. TNFα-driven IL-6 release from both HPMECs and HPASMCs was greater in PAH cells than control cells. Levels of CXCL8/IL-8 protein release was higher in PAH HPASMCs than in control cells with similar release observed in HPMECs. TNFα-induced recruitment of activated NF-κB p65 to the IL-6 and CXCL8/IL-8 promoters were similar in both cell types and between subject groups. JQ1+ suppressed TNFα-induced IL-6 and CXCL8/IL-8 release and mRNA expression to a comparable extent in control and PAH HPMECs and HPASMCs. JQ1 had a greater efficacy on IL-6 release in HPMEC and on CXCL8/IL-8 release in HPASMC. CONCLUSION: BET inhibition decreases TNFα driven inflammation in primary pulmonary vascular cells. The anti-inflammatory actions of JQ1 suggests distinct cell-specific regulatory control of these genes. BET proteins could be a target for future therapies for PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Humanos , Factor de Necrosis Tumoral alfa , Interleucina-8 , Células Endoteliales , Interleucina-6 , FN-kappa B , Proteínas Nucleares/genética , Factores de Transcripción/genética , Hipertensión Pulmonar Primaria Familiar , Proteínas de Ciclo Celular
2.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058248

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive disease characterised by pro-proliferative and anti-apoptotic phenotype in vascular cells, leading to pulmonary vascular remodelling and right heart failure. Peptidyl-prolyl cis/trans isomerase, NIMA interacting 1 (Pin1), a highly conserved enzyme, which binds to and catalyses the isomerisation of specific phosphorylated Ser/Thr-Pro motifs, acts as a molecular switch in multiple coordinated cellular processes. We hypothesised that Pin1 plays a substantial role in PAH, and its inhibition with a natural organic compound, Juglone, would reverse experimental pulmonary hypertension. RESULTS: We demonstrated that the expression of Pin1 was markedly elevated in experimental pulmonary hypertension (i.e. hypoxia-induced mouse and Sugen/hypoxia-induced rat models) and pulmonary arterial smooth muscle cells of patients with clinical PAH. In vitro Pin1 inhibition by either Juglone treatment or short interfering RNA knockdown resulted in an induction of apoptosis and decrease in proliferation of human pulmonary vascular cells. Stimulation with growth factors induced Pin1 expression, while its inhibition reduced the activity of numerous PAH-related transcription factors, such as hypoxia-inducible factor (HIF)-α and signal transducer and activator of transcription (STAT). Juglone administration lowered pulmonary vascular resistance, enhanced right ventribular function, improved pulmonary vascular and cardiac remodelling in the Sugen/hypoxia rat model of PAH and the chronic hypoxia-induced pulmonary hypertension model in mice. CONCLUSION: Our study demonstrates that targeting of Pin1 with small molecule inhibitor, Juglone, might be an attractive future therapeutic strategy for PAH and right heart disease secondary to PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Proteínas Adaptadoras Transductoras de Señales , Animales , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia , Ratones , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Ratas
3.
Am J Respir Cell Mol Biol ; 63(1): 118-131, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209028

RESUMEN

Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.


Asunto(s)
Enfermedad Veno-Oclusiva Pulmonar/metabolismo , Enfermedad Veno-Oclusiva Pulmonar/patología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Mutación/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Transducción de Señal/fisiología , Factor de Transcripción CHOP/metabolismo
4.
Circulation ; 139(7): 932-948, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586714

RESUMEN

BACKGROUND: Monoallelic mutations in the gene encoding bone morphogenetic protein receptor 2 ( Bmpr2) are the main genetic risk factor for heritable pulmonary arterial hypertension (PAH) with incomplete penetrance. Several Bmpr2 transgenic mice have been reported to develop mild spontaneous PAH. In this study, we examined whether rats with the Bmpr2 mutation were susceptible to developing more severe PAH. METHODS: The zinc finger nuclease method was used to establish rat lines with mutations in the Bmpr2 gene. These rats were then characterized at the hemodynamic, histological, electrophysiological, and molecular levels. RESULTS: Rats with a monoallelic deletion of 71 bp in exon 1 (Δ 71 rats) showed decreased BMPRII expression and phosphorylated SMAD1/5/9 levels. Δ 71 Rats develop age-dependent spontaneous PAH with a low penetrance (16%-27%), similar to that in humans. Δ 71 Rats were more susceptible to hypoxia-induced pulmonary hypertension than wild-type rats. Δ 71 Rats exhibited progressive pulmonary vascular remodeling associated with a proproliferative phenotype and showed lower pulmonary microvascular density than wild-type rats. Organ bath studies revealed severe alteration of pulmonary artery contraction and relaxation associated with potassium channel subfamily K member 3 (KCNK3) dysfunction. High levels of perivascular fibrillar collagen and pulmonary interleukin-6 overexpression discriminated rats that developed spontaneous PAH and rats that did not develop spontaneous PAH. Finally, detailed assessments of cardiomyocytes demonstrated alterations in morphology, calcium (Ca2+), and cell contractility specific to the right ventricle; these changes could explain the lower cardiac output of Δ 71 rats. Indeed, adult right ventricular cardiomyocytes from Δ 71 rats exhibited a smaller diameter, decreased sensitivity of sarcomeres to Ca2+, decreased [Ca2+] transient amplitude, reduced sarcoplasmic reticulum Ca2+ content, and short action potential duration compared with right ventricular cardiomyocytes from wild-type rats. CONCLUSIONS: We characterized the first Bmpr2 mutant rats and showed some of the critical cellular and molecular dysfunctions described in human PAH. We also identified the heart as an unexpected but potential target organ of Bmpr2 mutations. Thus, this new genetic rat model represents a promising tool to study the pathogenesis of PAH.


Asunto(s)
Presión Arterial/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Mutación , Contracción Miocárdica/genética , Arteria Pulmonar/fisiopatología , Función Ventricular Derecha/genética , Potenciales de Acción , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Fosforilación , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Arteria Pulmonar/metabolismo , Ratas Mutantes , Proteínas Smad/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L627-L640, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726132

RESUMEN

Vitamin D (VitD) receptor regulates the expression of several genes involved in signaling pathways affected in pulmonary hypertension (PH). VitD deficiency is highly prevalent in PH, and low levels are associated with poor prognosis. We investigated if VitD deficiency may predispose to or exacerbate PH. Male Wistar rats were fed with a standard or a VitD-free diet for 5 wk. Next, rats were further divided into controls or PH, which was induced by a single dose of Su-5416 (20 mg/kg) and exposure to hypoxia (10% O2) for 2 wk. VitD deficiency had no effect on pulmonary pressure in normoxic rats, indicating that, by itself, it does not trigger PH. However, it induced several moderate but significant changes characteristic of PH in the pulmonary arteries, such as increased muscularization, endothelial dysfunction, increased survivin, and reduced bone morphogenetic protein (Bmp) 4, Bmp6, DNA damage-inducible transcript 4, and K+ two-pore domain channel subfamily K member 3 (Kcnk3) expression. Myocytes isolated from pulmonary arteries from VitD-deficient rats had a reduced whole voltage-dependent potassium current density and acid-sensitive (TASK-like) potassium currents. In rats with PH induced by Su-5416 plus hypoxia, VitD-free diet induced a modest increase in pulmonary pressure, worsened endothelial function, increased the hyperreactivity to serotonin, arterial muscularization, decreased total and TASK-1 potassium currents, and further depolarized the pulmonary artery smooth muscle cell membrane. In human pulmonary artery smooth muscle cells from controls and patients with PH, the active form of VitD calcitriol significantly increased KCNK3 mRNA expression. Altogether, these data strongly suggest that the deficit in VitD induces pulmonary vascular dysfunction.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Deficiencia de Vitamina D/metabolismo , Animales , Humanos , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Potenciales de la Membrana/fisiología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Ratas Wistar , Vitamina D/metabolismo
6.
Eur Respir J ; 55(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980491

RESUMEN

Beyond the major gene BMPR2, several new genes predisposing to PAH have been identified during the last decade. Recently, preliminary evidence of the involvement of the KDR gene was found in a large genetic association study.We prospectively analysed the KDR gene by targeted panel sequencing in a series of 311 PAH patients referred to a clinical molecular laboratory for genetic diagnosis of PAH.Two index cases with severe PAH from two different families were found to carry a loss-of-function mutation in the KDR gene. These two index cases were clinically characterised by low diffusing capacity for carbon monoxide adjusted for haemoglobin (D LCOc) and interstitial lung disease. In one family, segregation analysis revealed that variant carriers are either presenting with PAH associated with low D LCOc, or have only decreased D LCOc, whereas non-carrier relatives have normal D LCOc. In the second family, a single affected carrier was alive. His carrier mother was unaffected with normal D LCOc.We provided genetic evidence for considering KDR as a newly identified PAH-causing gene by describing the segregation of KDR mutations with PAH in two families. In our study, KDR mutations are associated with a particular form of PAH characterised by low D LCOc and radiological evidence of parenchymal lung disease including interstitial lung disease and emphysema.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Mutación
7.
Int J Mol Sci ; 20(14)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336611

RESUMEN

Idiopathic pulmonary arterial hypertension (IPAH) is a complex disease associated with vascular remodeling and a proliferative disorder in pulmonary artery smooth muscle cells (PASMCs) that has been variably described as having neoplastic features. To decode the phenotype of PASMCs in IPAH, PASMCs from explanted lungs of patients with IPAH (IPAH-PASMCs) and from controls (C-PASMCs) were cultured. The IPAH-PASMCs grew faster than the controls; however, both growth curves plateaued, suggesting contact inhibition in IPAH cells. No proliferation was seen without stimulation with exogenous growth factors, suggesting that IPAH cells are incapable of self-sufficient growth. IPAH-PASMCs were more resistant to apoptosis than C-PASMCs, consistent with the increase in the Bcl2/Bax ratio. As cell replication is governed by telomere length, these parameters were assessed jointly. Compared to C-PASMCs, IPAH-PASMCs had longer telomeres, but a limited replicative capacity. Additionally, it was noted that IPAH-PASMCs had a shift in energy production from mitochondrial oxidative phosphorylation to aerobic glycolysis. As DNA damage and genomic instability are strongly implicated in IPAH development a comparative genomic hybridization was performed on genomic DNA from PASMCs which showed multiple break-points unaffected by IPAH severity. Activation of DNA damage/repair factors (γH2AX, p53, and GADD45) in response to cisplatin was measured. All proteins showed lower phosphorylation in IPAH samples than in controls, suggesting that the cells were resistant to DNA damage. Despite the cancer-like processes that are associated with end-stage IPAH-PASMCs, we identified no evidence of self-sufficient proliferation in these cells-the defining feature of neoplasia.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/etiología , Hipertensión Pulmonar Primaria Familiar/metabolismo , Músculo Liso/metabolismo , Apoptosis/genética , Comunicación Celular , Proliferación Celular , Células Cultivadas , Inhibición de Contacto , Daño del ADN , Metabolismo Energético , Hipertensión Pulmonar Primaria Familiar/fisiopatología , Inestabilidad Genómica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Músculo Liso/fisiopatología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Homeostasis del Telómero
9.
Commun Biol ; 4(1): 1002, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429509

RESUMEN

Pulmonary arterial hypertension (PAH), is a fatal disease characterized by a pseudo-malignant phenotype. We investigated the expression and the role of the receptor tyrosine kinase Axl in experimental (i.e., monocrotaline and Su5416/hypoxia treated rats) and clinical PAH. In vitro Axl inhibition by R428 and Axl knock-down inhibited growth factor-driven proliferation and migration of non-PAH and PAH PASMCs. Conversely, Axl overexpression conferred a growth advantage. Axl declined in PAECs of PAH patients. Axl blockage inhibited BMP9 signaling and increased PAEC apoptosis, while BMP9 induced Axl phosphorylation. Gas6 induced SMAD1/5/8 phosphorylation and ID1/ID2 increase were blunted by BMP signaling obstruction. Axl association with BMPR2 was facilitated by Gas6/BMP9 stimulation and diminished by R428. In vivo R428 aggravated right ventricular hypertrophy and dysfunction, abrogated BMPR2 signaling, elevated pulmonary endothelial cell apoptosis and loss. Together, Axl is a key regulator of endothelial BMPR2 signaling and potential determinant of PAH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Regulación de la Expresión Génica , Hipertensión Arterial Pulmonar/genética , Proteínas Tirosina Quinasas Receptoras/deficiencia , Inhibidores de la Angiogénesis/farmacología , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Indoles/farmacología , Masculino , Monocrotalina/farmacología , Pirroles/farmacología , Ratas Endogámicas WKY , Ratas Sprague-Dawley
10.
Ann Am Thorac Soc ; 18(8): 1306-1315, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33502958

RESUMEN

Rationale: Pulmonary hypertension (PH) has been described in patients treated with leflunomide. Objectives: To assess the association between leflunomide and PH. Methods: We identified incident cases of PH in patients treated with leflunomide from the French PH Registry and through the pharmacoVIGIlAnce in Pulmonary ArTerial Hypertension (VIGIAPATH) program between September 1999 to December 2019. PH etiology, clinical, functional, radiologic, and hemodynamic characteristics were reviewed at baseline and follow-up. A pharmacovigilance disproportionality analysis using the World Health Organization's global database was conducted. We then investigated the effect of leflunomide on human pulmonary endothelial cells. Data are expressed as median (min-max). Results: Twenty-eight patients treated with leflunomide before PH diagnosis was identified. A total of 21 (75%) had another risk factor for PH and 2 had two risk factors. The median time between leflunomide initiation and PH diagnosis was 32 months (1-120). Right heart catheterization confirmed precapillary PH with a cardiac index of 2.37 L⋅min-1 ⋅m-2 (1.19-3.1) and elevated pulmonary vascular resistance at 9.63 Wood Units (3.6-22.1) without nitric oxide reversibility. Five patients (17.9%) had no other risk factor for PH besides exposure to leflunomide. No significant hemodynamic improvement was observed after leflunomide withdrawal. The pharmacovigilance disproportionality analysis using the World Health Organization's database revealed a significant overrepresentation of leflunomide among reported pulmonary arterial hypertension-adverse drug reactions. In vitro studies showed the dose-dependent toxicity of leflunomide on human pulmonary endothelial cells. Conclusions: PH associated with leflunomide is rare and usually associated with other risk factors. The pharmacovigilance analysis suggests an association reinforced by experimental data.


Asunto(s)
Hipertensión Pulmonar , Cateterismo Cardíaco , Células Endoteliales , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/epidemiología , Leflunamida , Pulmón , Farmacovigilancia
11.
Pulm Circ ; 10(4): 2045894020907884, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33149891

RESUMEN

Trichloroethylene exposure is a major risk factor for pulmonary veno-occlusive disease. We demonstrated that trichloroethylene alters the endothelial barrier integrity, at least in part, through vascular endothelial (VE)-Cadherin internalisation, and suggested that this mechanism may play a role in the development of pulmonary veno-occlusive disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA