Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Med ; 29(1): 123, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37691124

RESUMEN

BACKGROUND: Trastuzumab (Trz)-induced cardiotoxicity (TIC) is one of the most common adverse effects of targeted anticancer agents. Although oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and ferroptosis have been identified as potential mechanisms underlying TIC, the roles of pyroptosis and necroptosis under TIC have never been investigated. It has been shown that inhibition of acetylcholinesterase function by using donepezil exerts protective effects in various heart diseases. However, it remains unknown whether donepezil exerts anti-cardiotoxic effects in rats with TIC. We hypothesized that donepezil reduces mitochondrial dysfunction, inflammation, oxidative stress, and cardiomyocyte death, leading to improved left ventricular (LV) function in rats with TIC. METHODS: Male Wistar rats were randomly assigned to be Control or Trz groups (Trz 4 mg/kg/day, 7 days, I.P.). Rats in Trz groups were assigned to be co-treated with either drinking water (Trz group) or donepezil 5 mg/kg/day (Trz + DPZ group) via oral gavage for 7 days. Cardiac function, heart rate variability (HRV), and biochemical parameters were evaluated. RESULTS: Trz-treated rats had impaired LV function, HRV, mitochondrial function, and increased inflammation and oxidative stress, leading to apoptosis, ferroptosis, and pyroptosis. Donepezil co-treatment effectively decreased those adverse effects of TIC, resulting in improved LV function. An in vitro study revealed that the cytoprotective effects of donepezil were abolished by a muscarinic acetylcholine receptor (mAChR) antagonist. CONCLUSIONS: Donepezil exerted cardioprotection against TIC via attenuating mitochondrial dysfunction, oxidative stress, inflammation, and cardiomyocyte death, leading to improved LV function through mAChR activation. This suggests that donepezil could be a novel intervention strategy in TIC.


Asunto(s)
Acetilcolinesterasa , Cardiotoxicidad , Masculino , Animales , Ratas , Ratas Wistar , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Trastuzumab/efectos adversos , Donepezilo , Apoptosis , Inflamación
2.
J Transl Med ; 21(1): 16, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627703

RESUMEN

BACKGROUND: Myocardial infarction (MI) has recently accounted for more than one-third of global mortality. Multiple molecular pathological pathways, such as oxidative stress, inflammation, and mitochondrial dysfunction, have been recognized as possible mechanisms in the development of MI. Furthermore, different phases of ischemic injury following the progression of MI were also associated with multiple types of programmed cell death (PCDs), including apoptosis, necroptosis, ferroptosis, and pyroptosis. However, it remains unknown whether which types of PCDs play the most dominant role in post-myocardial infarction (post-MI). METHOD: In this study, we used a preclinical rat model of MI induced by permanent left anterior descending coronary artery (LAD) ligation (n = 6) or a sham operated rat model (n = 6). After a 5-week experiment, cardiac function and morphology, mitochondrial studies, and molecular signaling analysis of PCDs were determined. RESULTS: Herein, we demonstrated that post-MI rats had considerably impaired cardiac geometry, increased oxidative stress, myocardial injuries, and subsequently contractile dysfunction. They also exhibited worsened cardiac mitochondrial function and dynamic imbalance. More importantly, we found that post-MI mediated abundant myocardial cell death through multiple PCDs, including apoptosis, necroptosis, and pyroptosis, but not ferroptosis. CONCLUSION: In this study, we provide the first insights into the mechanism of PCDs by pyroptosis, which is leveraged as the most dominant mode of cell death after MI.


Asunto(s)
Infarto del Miocardio , Disfunción Ventricular Izquierda , Animales , Ratas , Mitocondrias/metabolismo , Miocitos Cardíacos/patología , Piroptosis , Remodelación Ventricular , Gasderminas
3.
Toxicol Appl Pharmacol ; 479: 116727, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863361

RESUMEN

Iron overload cardiomyopathy (IOC) is the leading cause of death in cases of iron overload in patients. Previous studies demonstrated that iron overload led to cardiomyocyte dysfunction and death through multiple pathways including apoptosis, necroptosis and ferroptosis. However, the dominant cell death pathway in the iron-overloaded heart needs clarification. We tested the hypothesis that ferroptosis, an iron-dependent cell death, plays a dominant role in IOC, and ferroptosis inhibitor exerts greater efficacy than inhibitors of apoptosis and necroptosis on improving cardiac function in iron-overloaded rats. Iron dextran was injected intraperitoneally into male Wistar rats for four weeks to induce iron overload. Then, the rats were divided into 5 groups: treated with vehicle, apoptosis inhibitor (z-VAD-FMK), necroptosis inhibitor (Necrostatin-1), ferroptosis inhibitor (Ferrostatin-1) or iron chelator (deferoxamine) for 2 weeks. Cardiac function, mitochondrial function, apoptosis, necroptosis and ferroptosis were determined. The increased expression of apoptosis-, necroptosis- and ferroptosis-related proteins, were associated with impaired cardiac and mitochondrial function in iron-overloaded rats. All cell death inhibitors attenuated cardiac apoptosis, necroptosis and ferroptosis in iron-overloaded rats. Ferrostatin-1 was more effective than the other drugs in diminishing mitochondrial dysfunction and Bax/Bcl-2 ratio. Moreover, both Ferrostatin-1 and deferoxamine reversed iron overload-induced cardiac dysfunction as indicated by restored left ventricular ejection fraction and E/A ratio, whereas z-VAD-FMK and Necrostatin-1 only partially improved this parameter. These results indicated that ferroptosis could be the predominant form of cardiomyocyte death in IOC, and that inhibiting ferroptosis might be a potential novel treatment for IOC.


Asunto(s)
Cardiomiopatías , Ferroptosis , Sobrecarga de Hierro , Ratas , Humanos , Masculino , Animales , Deferoxamina/metabolismo , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Necroptosis , Volumen Sistólico , Ratas Wistar , Función Ventricular Izquierda , Apoptosis , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Hierro/metabolismo , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Cardiomiopatías/inducido químicamente , Mitocondrias , Miocitos Cardíacos/metabolismo
4.
Arch Biochem Biophys ; 740: 109598, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054769

RESUMEN

Inflammation and oxidative stress are mechanisms which potentially underlie the brain damage that can occur after cardiac ischemic and reperfusion (I/R) injury. 2i-10 is a new anti-inflammatory agent, acting via direct inhibition of myeloid differentiation factor 2 (MD2). However, the effects of 2i-10 and the antioxidant N-acetylcysteine (NAC) on pathologic brain in cardiac I/R injury are unknown. We hypothesized that 2i-10 and NAC offer similar neuroprotection levels against dendritic spine reduction through attenuation of brain inflammation, loss of tight junction integrity, mitochondrial dysfunction, reactive gliosis, and suppression of AD protein expression in rats with cardiac I/R injury. Male rats were allocated to either sham or acute cardiac I/R group (30 min of cardiac ischemia and 120 min of reperfusion). Rats in cardiac I/R group were given one of following treatments intravenously at the onset of reperfusion: vehicle, 2i-10 (20 or 40 mg/kg), and NAC (75 or 150 mg/kg). The brain was then used to determine biochemical parameters. Cardiac I/R led to cardiac dysfunction with dendritic spine loss, loss of tight junction integrity, brain inflammation, and mitochondrial dysfunction. Treatment with 2i-10 (both doses) effectively reduced cardiac dysfunction, tau hyperphosphorylation, brain inflammation, mitochondrial dysfunction, dendritic spine loss, and improved tight junction integrity. Although both doses of NAC effectively reduced brain mitochondrial dysfunction, treatment using a high dose of NAC reduced cardiac dysfunction, brain inflammation, and dendritic spine loss. In conclusion, treatment with 2i-10 and a high dose of NAC at the onset of reperfusion alleviated brain inflammation and mitochondrial dysfunction, consequently reducing dendritic spine loss in rats with cardiac I/R injury.


Asunto(s)
Encefalitis , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratas , Masculino , Animales , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Encéfalo/metabolismo , Estrés Oxidativo , Encefalitis/patología , Isquemia/patología
5.
Cardiovasc Drugs Ther ; 37(1): 89-105, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34515894

RESUMEN

PURPOSE: There is an increasing body of evidence to show that impairment in mitochondrial dynamics including excessive fission and insufficient fusion has been observed in the pre-diabetic condition. In pre-diabetic rats with cardiac ischemia-reperfusion (I/R) injury, acute treatment with a mitochondria fission inhibitor (Mdivi-1) and a fusion promoter (M1) showed cardioprotection. However, the potential preventive effects of chronic Mdivi-1 and M1 treatment in a pre-diabetic model of cardiac I/R have never been elucidated. METHODS: Male Wistar rats (n = 40) were fed with a high-fat diet (HFD) for 12 weeks to induce prediabetes. Then, all pre-diabetic rats received the following treatments daily via intraperitoneal injection for 2 weeks: (1) HFDV (Vehicle, 0.1% DMSO); (2) HFMdivi1 (Mdivi-1 1.2 mg/kg); (3) HFM1 (M1 2 mg/kg); and (4) HFCom (Mdivi-1 + M1). At the end of treatment protocols, all rats underwent 30 min of coronary artery ligation followed by reperfusion for 120 min. RESULTS: Chronic Mdivi-1, M1, and the combined treatment showed markedly improved cardiac mitochondrial function and dynamic control, leading to a decrease in cardiac arrhythmias, myocardial cell death, and infarct size (49%, 42%, and 51% reduction for HFMdivi1, HFM1, and HFCom, respectively vs HFDV). All of these treatments improved cardiac function following cardiac I/R injury in pre-diabetic rats. CONCLUSION: Chronic inhibition of mitochondrial fission and promotion of fusion exerted cardioprevention in prediabetes with cardiac I/R injury through the relief of cardiac mitochondrial dysfunction and dynamic alterations, and reduction in myocardial infarction, thus improving cardiac function.


Asunto(s)
Diabetes Mellitus Experimental , Daño por Reperfusión Miocárdica , Estado Prediabético , Ratas , Masculino , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Ratas Wistar , Dinámicas Mitocondriales , Estado Prediabético/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Miocitos Cardíacos , Mitocondrias/metabolismo , Apoptosis
6.
Cell Mol Life Sci ; 79(6): 300, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35588335

RESUMEN

Although acute melatonin treatment effectively reduces cardiac ischemia/reperfusion (I/R) injury in lean rats by modulating melatonin receptor 2 (MT2), there is no information regarding the temporal effects of melatonin administration during cardiac I/R injury in prediabetic obese rats. Prediabetic obese rats induced by chronic consumption of a high-fat diet (HFD) were used. The rats underwent a cardiac I/R surgical procedure (30-min of ischemia, followed by 120-min of reperfusion) and were randomly assigned to receive either vehicle or melatonin treatment. In the melatonin group, rats were divided into 3 different subgroups: (1) pretreatment, (2) treatment during ischemic period, (3) treatment at the reperfusion onset. In the pretreatment subgroup either a nonspecific MT blocker (Luzindole) or specific MT2 blocker (4-PPDOT) was also given to the rats prior to melatonin treatment. Pretreatment with melatonin (10 mg/kg) effectively reduced cardiac I/R injury by reducing infarct size, arrhythmia, and LV dysfunction. Reduction in impaired mitochondrial function, mitochondrial dynamic balance, oxidative stress, defective autophagy, and apoptosis were observed in rats pretreated with melatonin. Unfortunately, the cardioprotective benefits were not observed when 10-mg/kg of melatonin was acutely administered to the rats after cardiac ischemia. Thus, we increased the dose of melatonin to 20 mg/kg, and it was administered to the rats during ischemia or at the onset of reperfusion. The results showed that 20-mg/kg of melatonin effectively reduced cardiac I/R injury to a similar extent to the 10-mg/kg pretreatment regimen. The MT2 blocker inhibited the protective effects of melatonin. Acute melatonin treatment during cardiac I/R injury exerted protective effects in prediabetic obese rats. However, a higher dose of melatonin is required when given after the onset of cardiac ischemia. These effects of melatonin were mainly mediated through activation of MT2.


Asunto(s)
Melatonina , Daño por Reperfusión Miocárdica , Estado Prediabético , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Estado Prediabético/complicaciones , Estado Prediabético/tratamiento farmacológico , Ratas , Ratas Wistar
7.
Cell Mol Life Sci ; 80(1): 21, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583785

RESUMEN

The aberration of programmed cell death including cell death associated with autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis can be observed in the development and progression of doxorubicin-induced cardiotoxicity (DIC). Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against cardiomyocyte death through the release of the neurotransmitter acetylcholine (ACh) under a variety of pathological conditions. However, the roles of VNS and its underlying mechanisms against DIC have never been investigated. Forty adults male Wistar rats were divided into 5 experimental groups: (i) control without VNS (CSham) group, (ii) doxorubicin (3 mg/kg/day, i.p.) without VNS (DSham) group, (iii) doxorubicin + VNS (DVNS) group, (iv) doxorubicin + VNS + mAChR antagonist (atropine; 1 mg/kg/day, ip, DVNS + Atro) group, and (v) doxorubicin + VNS + nAChR antagonist (mecamylamine; 7.5 mg/kg/day, ip, DVNS + Mec) group. Our results showed that doxorubicin insult led to left ventricular (LV) dysfunction through impaired cardiac autonomic balance, decreased mitochondrial function, imbalanced mitochondrial dynamics, and exacerbated cardiomyocyte death including autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. However, VNS treatment improved cardiac mitochondrial and autonomic functions, and suppressed excessive autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, leading to improved LV function. Consistent with this, ACh effectively improved cell viability and suppressed cell cytotoxicity in doxorubicin-treated H9c2 cells. In contrast, either inhibitors of muscarinic (mAChR) or nicotinic acetylcholine receptor (nAChR) completely abrogated the favorable effects mediated by VNS and acetylcholine. These findings suggest that VNS exerts cardioprotective effects against doxorubicin-induced cardiomyocyte death via activation of both mAChR and nAChR.


Asunto(s)
Infarto del Miocardio , Estimulación del Nervio Vago , Ratas , Animales , Masculino , Infarto del Miocardio/patología , Estimulación del Nervio Vago/métodos , Acetilcolina , Cardiotoxicidad/terapia , Ratas Wistar , Apoptosis/fisiología , Doxorrubicina/toxicidad , Miocitos Cardíacos/metabolismo , Nervio Vago/metabolismo , Nervio Vago/patología
8.
J Cell Mol Med ; 26(8): 2462-2476, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315192

RESUMEN

Growing evidence demonstrated that cell death pathways including ferroptosis, apoptosis and necroptosis contribute to cardiac ischaemia/reperfusion (I/R) injury. We hypothesized that ferroptosis, apoptosis and necroptosis contribute differently to myocardial damage during acute cardiac I/R injury. Rats underwent cardiac I/R or sham operation. I/R-operated rats were divided into 4 groups: vehicle, apoptosis (Z-vad), ferroptosis (Fer-1) and necroptosis (Nec-1) inhibition. Rats in each cell death inhibitor group were subdivided into 3 different dose regimens: low, medium and high. Infarct size, left ventricular (LV) function, arrhythmias and molecular mechanism were investigated. Cardiac I/R caused myocardial infarction, LV dysfunction, arrhythmias, mitochondrial dysfunction, mitochondrial dynamic imbalance, inflammation, apoptosis and ferroptosis. Infarct size, LV dysfunction, mitochondrial dysfunction, apoptosis and ferroptosis were all reduced to a similar extent in rats treated with Z-vad (low and medium doses) or Fer-1 (medium and high doses). Fer-1 treatment also reduced mitochondrial dynamic imbalance and inflammation. No evidence of necroptosis was found in association with acute I/R injury, therefore Nec-1 treatment could not be assessed. Apoptosis and ferroptosis, not necroptosis, contributed to myocardial damage in acute I/R injury. Inhibitors of these 2 pathways provided effective cardioprotection in rats with I/R injury though modulation of mitochondrial function and attenuated apoptosis and ferroptosis.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Disfunción Ventricular Izquierda , Animales , Apoptosis , Arritmias Cardíacas/tratamiento farmacológico , Inflamación/metabolismo , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Wistar , Disfunción Ventricular Izquierda/metabolismo
9.
Clin Sci (Lond) ; 136(11): 841-860, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35543245

RESUMEN

Changes in mitochondrial dynamics have been recognized as being one of the mechanisms related to cardiotoxicity following a high cumulative dose of doxorubicin (DOX). A mitochondrial division inhibitor-1 (Mdivi-1) and fusion promoter (M1) have been shown to be cardioprotective in a variety of cardiovascular settings, however, their anticardiotoxic efficacy against DOX therapy remains unclear. We therefore investigated whether treatment with Mdivi-1 and M1 protects the heart against DOX-induced cardiotoxicity via mitochondria-targeted pathways. Male Wistar rats (n=40) received DOX (3 mg/kg, six doses, n=32) or 3% dimethylsulfoxide (DMSO) in the normal saline solution (NSS) (n=8) as a control. DOX-injected rats were given one of four treatments beginning with the first DOX injection via intraperitoneal injection: 1) 3% DMSO in NSS (n=8), 2) Mdivi-1 (1.2 mg/kg per day, n=8), 3) M1 (2 mg/kg per day, n=8), and 4) Mdivi-1+M1 (n=8) for 30 days. Cardiac function, mitochondrial function, oxidative stress, myocardial injury, and protein expression associated with inflammation, autophagy, mitophagy, apoptosis, and mitochondrial dynamics were determined. DOX caused a significant deterioration in mitochondrial function and dynamic regulation, and an increase in markers of oxidative stress, inflammation, myocardial injury, apoptosis, autophagy, and mitophagy, resulting in impaired cardiac function. Cotreatment of DOX with Mdivi-1, M1, or a combination of the two mitigated these detrimental effects of DOX. These findings imply that either inhibiting fission or promoting fusion of mitochondria protects the heart from DOX-induced myocardial damage. Modulation of mitochondrial dynamics could be a novel therapeutic target in alleviating DOX-induced cytotoxic effects without compromising its anticancer efficacy.


Asunto(s)
Cardiotoxicidad , Dinámicas Mitocondriales , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis , Cardiotoxicidad/etiología , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Doxorrubicina/farmacología , Inflamación/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar
10.
Exp Mol Pathol ; 127: 104818, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35882281

RESUMEN

Doxorubicin (Dox), a powerful chemotherapeutic agent, has been shown to cause cardiotoxicity and neurotoxicity. Ranolazine, a drug that is commonly used to treat patients with chronic angina, has been shown to reduce toxicity from Dox therapy. Therefore, the present study aims to investigate the mechanisms behind the protective effects of ranolazine on the heart and brain in Dox-treatment. Twenty-four male Wistar rats received 6 doses of either 0.9% normal saline (0.9% NSS, i.p., n = 8) or Dox (3 mg/kg, i.p., n = 16). All Dox-treated rats were assigned into 2 groups to receive vehicle (0.9% NSS, orally; n = 8) or ranolazine (305 mg/kg/day, orally; n = 8) for 30 consecutive days. Following the treatments, left ventricular (LV) function and cognition were determined. Animals were euthanized, then the heart and brain were collected for further analysis. Dox induced systemic oxidative stress/inflammation, and cardiac injury evidenced by mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis, resulting in LV dysfunction. Ranolazine significantly improved LV function via attenuating cardiac injury. Dox also caused brain pathologies as indicated by increased brain inflammation, impaired blood-brain barrier integrity, brain mitochondrial dysfunction, microglial dysmorphology, hippocampal dysplasticity, and increased apoptosis, resulting in cognitive decline. Ranolazine exerted neuroprotective effects by suppressing brain pathologies and restoring cognitive function. These findings suggest that ranolazine has a potential role in cardio- and neuro-protection against chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos , Doxorrubicina , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Encéfalo , Doxorrubicina/efectos adversos , Masculino , Estrés Oxidativo , Ranolazina/farmacología , Ratas , Ratas Wistar
11.
Acta Pharmacol Sin ; 43(1): 26-38, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33712720

RESUMEN

Mitochondria are extraordinarily dynamic organelles that have a variety of morphologies, the status of which are controlled by the opposing processes of fission and fusion. Our recent study shows that inhibition of excessive mitochondrial fission by Drp1 inhibitor (Mdivi-1) leads to a reduction in infarct size and left ventricular (LV) dysfunction following cardiac ischemia-reperfusion (I/R) injury in high fat-fed induced pre-diabetic rats. In the present study, we investigated the cardioprotective effects of a mitochondrial fusion promoter (M1) and a combined treatment (M1 and Mdivi-1) in pre-diabetic rats. Wistar rats were given a high-fat diet for 12 weeks to induce prediabetes. The rats then subjected to 30 min-coronary occlusions followed by reperfusion for 120 min. These rats were intravenously administered M1 (2 mg/kg) or M1 (2 mg/kg) combined with Mdivi-1 (1.2 mg/kg) prior to ischemia, during ischemia or at the onset of reperfusion. We showed that administration of M1 alone or in combination with Mdivi-1 prior to ischemia, during ischemia or at the onset of reperfusion all significantly attenuated cardiac mitochondrial ROS production, membrane depolarization, swelling and dynamic imbalance, leading to reduced arrhythmias and infarct size, resulting in improved LV function in pre-diabetic rats. In conclusion, the promotion of mitochondrial fusion at any time-points during cardiac I/R injury attenuated cardiac mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and improved LV function in pre-diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Estado Prediabético/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Masculino , Dinámicas Mitocondriales/efectos de los fármacos , Estructura Molecular , Daño por Reperfusión Miocárdica/inducido químicamente , Estado Prediabético/inducido químicamente , Quinazolinonas/farmacología , Ratas , Ratas Wistar , Relación Estructura-Actividad
12.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362245

RESUMEN

Doxorubicin (DOXO)-induced cardiomyopathy (DIC) is a lethal complication in cancer patients. Major mechanisms of DIC involve oxidative stress in cardiomyocytes and hyperactivated immune response. Extracellular vesicles (EVs) mediate cell-cell communication during oxidative stress. However, functions of circulating EVs released after chronic DOXO exposure on cardiomyocytes and immune cells are still obscured. Herein, we developed a DIC in vivo model using male Wistar rats injected with 3 mg/kg DOXO for 6 doses within 30 days (18 mg/kg cumulative dose). One month after the last injection, the rats developed cardiotoxicity evidenced by increased BCL2-associated X protein and cleaved caspase-3 in heart tissues, along with N-terminal pro B-type natriuretic peptide in sera. Serum EVs were isolated by size exclusion chromatography. EV functions on H9c2 cardiomyocytes and NR8383 macrophages were evaluated. EVs from DOXO-treated rats (DOXO_EVs) attenuated ROS production via increased glutathione peroxidase-1 and catalase gene expression, and reduced hydrogen peroxide-induced cell death in cardiomyocytes. In contrast, DOXO_EVs induced ROS production, interleukin-6, and tumor necrosis factor-alpha, while suppressing arginase-1 gene expression in macrophages. These results suggested the pleiotropic roles of EVs against DIC, which highlight the potential role of EV-based therapy for DIC with a concern of its adverse effect on immune response.


Asunto(s)
Cardiomiopatías , Vesículas Extracelulares , Ratas , Masculino , Animales , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Wistar , Doxorrubicina/farmacología , Estrés Oxidativo , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Cardiomiopatías/inducido químicamente , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Expresión Génica
13.
J Biomed Sci ; 28(1): 25, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836761

RESUMEN

Cardiovascular diseases (CVDs) are considered the predominant cause of morbidity and mortality globally. Of these, myocardial infarction (MI) is the most common cause of CVD mortality. MI is a life-threatening condition which occurs when coronary perfusion is interrupted leading to cardiomyocyte death. Subsequent to MI, consequences include adverse cardiac remodeling and cardiac dysfunction mainly contribute to the development of heart failure (HF). It has been shown that loss of functional cardiomyocytes in MI-induced HF are associated with several cell death pathways, in particular necroptosis. Although the entire mechanism underlying necroptosis in MI progression is still not widely recognized, some recent studies have reported beneficial effects of necroptosis inhibitors on cell viability and cardiac function in chronic MI models. Therefore, extensive investigation into the necroptosis signaling pathway is indicated for further study. This article comprehensively reviews the context of the underlying mechanisms of necroptosis in chronic MI-induced HF in in vitro, in vivo and clinical studies. These findings could inform ways of developing novel therapeutic strategies to improve the clinical outcomes in MI patients from this point forward.


Asunto(s)
Insuficiencia Cardíaca/terapia , Infarto del Miocardio/terapia , Necroptosis , Animales , Enfermedad Crónica/terapia , Humanos , Ratones
14.
Pharmacol Res ; 173: 105882, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34530122

RESUMEN

Doxorubicin is an effective chemotherapeutic drug, but causes cardiotoxicity which limits its use. Oxidative stress, mitochondrial dysfunction, and inflammation are closely implicated in doxorubicin-induced cardiotoxicity (DIC). Necroptosis, a new form of programmed cell death, was also upregulated by doxorubicin, leading to cardiomyocyte death and cardiac dysfunction. Donepezil, an acetylcholinesterase inhibitor, exerted cardioprotection against various heart diseases. However, its cardioprotective effects in DIC are still unknown. We hypothesized that donepezil reduces reactive oxygen species (ROS) production, mitochondrial dysfunction, mitochondrial dynamics imbalance, necroptosis, and apoptosis in DIC rats. Male Wistar rats were assigned to receive either normal saline solution (n = 8) or doxorubicin (3 mg/kg, 6 doses, n = 16) via intraperitoneal injection. The doxorubicin-treated rats were further subdivided to receive either sterile drinking water (n = 8) or donepezil (5 mg/kg/day, p.o., n = 8) for 30 days. At the end of the experiment, the left ventricular (LV) function was determined. Serum and heart tissue were collected to evaluate histological and biochemical parameters. Doxorubicin-treated rats exhibited higher levels of inflammatory cytokines and ROS production. Doxorubicin also impaired mitochondrial function, mitochondrial dynamics balance, mitophagy, and autophagy, which culminated in apoptosis. Furthermore, doxorubicin increased necroptosis as evidenced by increased phosphorylation of receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed-lineage kinase domain-like. All of these mechanisms led to LV dysfunction. Interestingly, donepezil alleviated mitochondrial injury, mitophagy, autophagy, and cardiomyocyte death, leading to improved LV function in DIC. In conclusion, donepezil attenuated DIC-induced LV dysfunction by reducing mitochondrial damage, mitophagy, autophagy, apoptosis, and necroptosis.


Asunto(s)
Antibióticos Antineoplásicos , Cardiotoxicidad/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Donepezilo/uso terapéutico , Doxorrubicina , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/fisiopatología , Línea Celular , Inhibidores de la Colinesterasa/farmacología , Donepezilo/farmacología , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Miocardio/metabolismo , Necroptosis/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
15.
J Cell Mol Med ; 23(11): 7310-7319, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31557388

RESUMEN

During acute cardiac ischaemia/reperfusion (I/R), an increased plasma proprotein convertase subtilisin/kexin 9 (PCSK9) level instigates inflammatory and oxidative processes within ventricular myocytes, resulting in cardiac dysfunction. Therefore, PCSK9 inhibitor (PCSK9i) might exert cardioprotection against I/R injury. However, the effects of PCSK9i on the heart during I/R injury have not been investigated. The effects of PCSK9i given at different time-points during I/R injury on left ventricular (LV) function were investigated. Male Wistar rats were subjected to cardiac I/R injury and divided into 3 treatment groups (n = 10/group): pre-ischaemia, during ischaemia and upon onset of reperfusion. The treatment groups received PCSK9i (Pep2-8, 10 µg/kg) intravenously. A control group (n = 10) received saline solution. During the I/R protocol, arrhythmia scores and LV function were determined. Then, the infarct size, mitochondrial function, mitochondrial dynamics and level of apoptosis were determined. PCSK9i given prior to ischaemia exerted cardioprotection through protection of cardiac mitochondrial function, decreased infarct size and improved LV function, compared with control. PCSK9i administered during ischaemia and upon the onset of reperfusion did not provide any of those benefits. PCSK9i administered before ischaemia exerts cardioprotection, as demonstrated by the attenuation of infarct size and cardiac arrhythmia during cardiac I/R injury. The attenuation is associated with improved mitochondrial function and connexin43 phosphorylation, leading to improved LV function.


Asunto(s)
Arritmias Cardíacas/prevención & control , Cardiotónicos/farmacología , Lípidos/análisis , Isquemia Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Inhibidores de PCSK9 , Animales , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Wistar
16.
Clin Sci (Lond) ; 133(24): 2431-2447, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31808509

RESUMEN

Obese insulin resistance impairs cardiac mitochondrial dynamics by increasing mitochondrial fission and decreasing mitochondrial fusion, leading to mitochondrial damage, myocardial cell death and cardiac dysfunction. Therefore, inhibiting fission and promoting fusion could provide cardioprotection in this pre-diabetic condition. We investigated the combined effects of the mitochondrial fission inhibitor (Mdivi1) and fusion promoter (M1) on cardiac function in obese insulin-resistant rats. We hypothesized that Mdivi1 and M1 protect heart against obese insulin-resistant condition, but also there will be greater improvement using Mdivi1 and M1 as a combined treatment. Wistar rats (n=56, male) were randomly assigned to a high-fat diet (HFD) and normal diet (ND) fed groups. After feeding with either ND or HFD for 12 weeks, rats in each dietary group were divided into groups to receive either the vehicle, Mdivi1 (1.2 mg/kg, i.p.), M1 (2 mg/kg, i.p.) or combined treatment for 14 days. The cardiac function, cardiac mitochondrial function, metabolic and biochemical parameters were monitored before and after the treatment. HFD rats developed obese insulin resistance which led to impaired dynamics balance and function of mitochondria, increased cardiac cell apoptosis and dysfunction. Although Mdivi1, M1 and combined treatment exerted similar cardiometabolic benefits in HFD rats, the combined therapy showed a greater reduction in mitochondrial reactive oxygen species (ROS). Mitochondrial fission inhibitor and fusion promoter exerted similar levels of cardioprotection in a pre-diabetic condition.


Asunto(s)
Resistencia a la Insulina , Mitocondrias Cardíacas/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Obesidad/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Dieta Alta en Grasa/efectos adversos , Masculino , Mitocondrias Cardíacas/metabolismo , Quinazolinonas/farmacología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
17.
Clin Sci (Lond) ; 133(3): 497-513, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30705107

RESUMEN

An uncontrolled balance of mitochondrial dynamics has been shown to contribute to cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although inhibition of mitochondrial fission could ameliorate cardiac dysfunction, modulation of mitochondrial fusion by giving a fusion promoter at different time-points during cardiac I/R injury has never been investigated. We hypothesized that giving of a mitochondrial fusion promoter at different time-points exerts cardioprotection with different levels of efficacy in rats with cardiac I/R injury. Forty male Wistar rats were subjected to a 30-min ischemia by coronary occlusion, followed by a 120-min reperfusion. The rats were then randomly divided into control and three treated groups: pre-ischemia, during-ischemia, and onset of reperfusion. A pharmacological mitochondrial fusion promoter-M1 (2 mg/kg) was used for intervention. Reduced mitochondrial fusion protein was observed after cardiac I/R injury. M1 administered prior to ischemia exerted the highest level of cardioprotection by improving both cardiac mitochondrial function and dynamics regulation, attenuating incidence of arrhythmia, reducing infarct size and cardiac apoptosis, which led to the preservation of cardiac function and decreased mortality. M1 given during ischemia and on the onset of reperfusion also exerted cardioprotection, but with a lower efficacy than when given at the pre-ischemia time-point. Attenuating a reduction in mitochondrial fusion proteins during myocardial ischemia and at the onset of reperfusion exerted cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, thus reducing infarct size and improving cardiac function. These findings indicate that it could be a promising intervention with the potential to afford cardioprotection in the clinical setting of acute myocardial infarction.


Asunto(s)
Dinámicas Mitocondriales , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/administración & dosificación , Humanos , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Wistar , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/metabolismo
19.
Clin Sci (Lond) ; 132(15): 1669-1683, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30065084

RESUMEN

Altered cardiac mitochondrial dynamics with excessive fission is a predominant cause of cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although pre-ischemic inhibition of mitochondrial fission has been shown to improve cardiac function in I/R injury, the effects of this inhibitor given at different time-points during cardiac I/R injury are unknown. Fifty male Wistar rats were subjected to sham and cardiac I/R injury. For cardiac I/R injury, rats were randomly divided into pre-ischemia, during-ischemia, and upon onset of reperfusion group. A mitochondrial fission inhibitor, Mdivi-1 (mitochondrial division inhibitor 1) (1.2 mg/kg) was used. During I/R protocols, the left ventricular (LV) function, arrhythmia score, and mortality rate were determined. Then, the heart was removed to determine infarct size, mitochondrial function, mitochondrial dynamics, and apoptosis. Our results showed that Mdivi-1 given prior to ischemia, exerted the highest level of cardioprotection quantitated through the attenuated incidence of arrhythmia, reduced infarct size, improved cardiac mitochondrial function and fragmentation, and decreased cardiac apoptosis, leading to preserved LV function during I/R injury. Mdivi-1 administered during ischemia and upon the onset of reperfusion also improved cardiac mitochondrial function and LV function, but at a lower efficacy than when it was given prior to ischemia. Taken together, mitochondrial fission inhibition after myocardial ischemic insults still exerts cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and ultimately improved LV function after acute cardiac I/R injury in rats. These findings indicate its potential clinical usefulness.


Asunto(s)
Mitocondrias Cardíacas/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Daño por Reperfusión Miocárdica/fisiopatología , Quinazolinonas/farmacología , Animales , Apoptosis/efectos de los fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Cardiotónicos/farmacología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Masculino , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Distribución Aleatoria , Ratas Wistar , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
20.
J Cell Mol Med ; 21(11): 2643-2653, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28941171

RESUMEN

The current therapeutic strategy for the management of acute myocardial infarction (AMI) is to return blood flow into the occluded coronary artery of the heart, a process defined as reperfusion. However, reperfusion itself can increase mortality rates in AMI patients because of cardiac tissue damage and dysfunction, which is termed 'ischaemia/reperfusion (I/R) injury'. Mitochondria play an important role in myocardial I/R injury as disturbance of mitochondrial dynamics, especially excessive mitochondrial fission, is a predominant cause of cardiac dysfunction. Therefore, pharmacological intervention and therapeutic strategies which modulate the mitochondrial dynamics balance during I/R injury could exert great beneficial effects to the I/R heart. This review comprehensively summarizes and discusses the effects of mitochondrial fission inhibitors as well as mitochondrial fusion promoters on cardiac and mitochondrial function during myocardial I/R injury. The comparison of the effects of both compounds given at different time-points during the course of I/R injury (i.e. prior to ischaemia, during ischaemia and at the reperfusion period) are also summarized and discussed. Finally, this review also details important information which may contribute to clinical practices using these drugs to improve the quality of life in AMI patients.


Asunto(s)
Cardiotónicos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Línea Celular , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/farmacología , Humanos , Hidrazonas/farmacología , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fragmentos de Péptidos/farmacología , Quinazolinonas/farmacología , Tacrolimus/farmacología , Función Ventricular Izquierda/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA