RESUMEN
The aim of this study is to validate an in vitro skin irritation test (SIT) using three-dimensional reconstructed human epidermal (RhE) skin equivalents prepared by layer-by-layer (LbL) method (LbL-3D Skin) in a series of interlaboratory studies. The goal of these validation studies is to evaluate the ability of this in vitro test to reliably discriminate skin irritant from nonirritant chemicals, as defined by OECD and UN GHS. This me-too validation study is to assess the within- and between-laboratory reproducibility, as well as the predictive capacity, of the LbL-3D Skin SIT in accordance with performance standards for OECD TG 439. The developed skin model, LbL-3D Skin had a highly differentiated epidermis and dermis, similar to the validated reference methods (VRM) and native human skin. The quality parameters (cell survival in controls, tissue integrity, and barrier function) were similar to VRM and in accordance with OECD TG 439. The LbL-3D Skin SIT validation study was performed by three participating laboratories and consisted of three independent tests using 20 reference chemicals. The results obtained with the LbL-3D Skin demonstrated high within-laboratory and between-laboratory reproducibility, as well as high accuracy for use as a stand-alone assay to distinguish skin irritants from nonirritants. The predictive potency of LbL-3D Skin SIT using total 54 test chemicals were comparable to those in other RhE models in OECD TG 439. The validation study demonstrated that LbL-3D Skin has proven to be a robust and reliable method for predicting skin irritation.
Asunto(s)
Irritantes , Pruebas de Irritación de la Piel , Humanos , Animales , Reproducibilidad de los Resultados , Pruebas de Irritación de la Piel/métodos , Irritantes/toxicidad , Piel , Epidermis , Técnicas In Vitro , Alternativas a las Pruebas en AnimalesRESUMEN
Skin hyperpigmentation is commonly treated by topical drug application. Several naturally occurring compounds exhibit attractive biological effects including anti-melanogenic activity. Chemically modified derivatives of those compounds are expected to be more efficient. However, efficacy and safety testing processes are of significant consideration to identify the most effective compound among them. Herein, we demonstrated a tiered approach to investigate the antipigmentation activity of 17 trans-N-coumaroyltyramine derivatives. First, we evaluated the in chemico antityrosinase activity, then the cytotoxicity of the most potent derivatives using a mitochondrial activity-based assay, followed with the in vitro anti-melanogenic activity in two dimensional (2D) monolayer human melanocytes. The selected derivatives were topically applied on a three dimensional (3D) pigmented-reconstructed human epidermis (pRhE) containing melanocytes and keratinocytes to evaluate their depigmenting activity. Two of the 17 derivatives displayed a significant reduction in pigmentation in the 3D pRhE, comparable to kojic acid, a known tyrosinase inhibitor. In addition, a molecular docking experiment indicated an interaction of the three derivatives and tyrosinase, suggesting that these derivatives have potent anti-melanogenic activity through tyrosinase inhibition. Our findings provide an alternative approach for investigating skin-whitening agents, thereby facilitating the research and development of skin-whitening products that need not be tested on animals.
Asunto(s)
Melaninas , Monofenol Monooxigenasa , Animales , Ácidos Cumáricos , Humanos , Melanocitos , Simulación del Acoplamiento Molecular , Tiramina/análogos & derivadosRESUMEN
Cytochrome P450 (CYP) enzymes are responsible for oxidative metabolisms of a large number of xenobiotics. In this study, we investigated interactions of silver nanoparticles (AgNPs) and silver ions (Ag+) with six CYP isoforms, namely, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4, within CYP-specific inhibitor-binding pockets by molecular docking and quantum mechanical (QM) calculations. The docking results revealed that the Ag3 cluster, not Ag+, interacted with key amino acids of CYP2C9, CYP2C19, and CYP2D6 within a distance of about 3 Å. Moreover, the QM analysis confirmed that the amino acid residues of these CYP enzymes strongly interacted with the Ag3 cluster, providing more insight into the mechanism of the potential inhibition of CYP enzyme activities. Interestingly, these results are consistent with previous in vitro data indicating that AgNPs inhibited activities of CYP2C and CYP2D in rat liver microsomes. It is suggested that the Ag3 cluster is a minimal unit of AgNPs for in silico modeling. In summary, we demonstrated that molecular docking, together with QM analysis, is a promising tool to predict AgNP-mediated CYP inhibition. These methods are useful for deeper understanding of reaction mechanisms and could be used for other nanomaterials.
Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Nanopartículas del Metal , Simulación del Acoplamiento Molecular , Plata/química , Plata/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Conformación Proteica , Plata/farmacología , TermodinámicaRESUMEN
Silver nanoparticles (AgNPs) are widely used in industry, consumer products, and medical appliances due to their efficient antimicrobial properties. However, information on environmental toxicity and bacterial impact of these particles is not completely elucidated. Results showed that AgNPs produced growth inhibition and oxidative stress in bacteria Escherichia coli (gram negative) and Staphylococcus aureus (gram positive), with half-maximal inhibitory concentrations (IC50) of 12 and 7 mg/L, respectively. Surprisingly, bacteria pre-exposed to sublethal dose of AgNPs exhibited increased resistance toward antibiotics (ampicillin and Pen-Strep) with IC50 elevated by 3-13-fold. Further, AgNP pre-exposure raised the minimal inhibitory concentration and minimal biocidal concentration by two- to eightfold when cells were challenged with antibiotics with diverse mechanisms of action (penicillin, chloramphenicol, and kanamycin). Interestingly, we found that upon exposure to ampicillin, strains pretreated with AgNPs exhibited lower levels of membrane damage and oxidative stress, together with elevated levels of intracellular ATP relative to untreated cells. Bacterial reverse mutation assay (Ames test) showed that AgNPs are highly mutagenic, consistent with further assays demonstrating abiotic reactive oxygen species (ROS) generation and intrinsic DNA cleavage activity in vitro of AgNPs. Overall, our results suggest that AgNPs enhance bacterial resistance to antibiotics by promoting stress tolerance through induction of intracellular ROS. Our data suggest potential consequences of incidental environmental exposure of bacteria to AgNPs and indicate the need to regulate use and disposal of AgNPs in industry and consumer products.
Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Microbiana , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Concentración 50 Inhibidora , Pruebas de Sensibilidad MicrobianaRESUMEN
Potential use of a quaternized chitosan (MW 600 kDa) with 65% of 3-chloro-2-hydroxypropyltrimethylammonium (600-HPTChC65) as an absorptive enhancer was investigated in Caco-2 monolayers. 600-HPTChC65 (0.005% w/v) quickly reduced transepithelial electrical resistance (TEER) to the maximum level in 40 min with full recovery within 6 h after removal. Its TEER reduction was corresponded to increased FD4 transport across the monolayers and disrupted localization of tight junction proteins ZO-1 and occludin at the cell borders. 600-HPTChC65 was densely localized at the membrane surface and intercellular junctions. This chitosan (0.08-0.32% w/v) reduced the efflux ratio of [3H]-digoxin by 1.7- 2 folds, suggesting an increased [3H]-digoxin transport across the monolayers. Its binding with P-gp on Caco-2 monolayer increased the signal of fluorescence-labeled anti-P-gp (UIC2) reactivity due to conformational change. 600-HPTChC65 (0.32% w/v) had no effect on P-gp expression in the Caco-2 monolayers. These results suggest that 600-HPTChC65 could enhance drug absorption through tight junction opening and decreased P-gp function. Its interaction with the absorptive barrier mainly resulted in disrupting ZO-1 and occludin organization as well as changing in P-gp conformation.
Asunto(s)
Quitosano , Humanos , Quitosano/farmacología , Células CACO-2 , Ocludina/metabolismo , Peso Molecular , Absorción Intestinal , Uniones Estrechas/metabolismo , Mucosa Intestinal/metabolismoRESUMEN
Silver nanoparticles (AgNPs) are increasingly used in various products and consequentially the potential adverse effects associated with exposure to them are of concern. This study investigated the effects of AgNPs on the hepatic drug-metabolizing enzymes of the cytochrome P450 (CYP) families 1, 2 and 3, using both in vitro and in vivo biological assays. AgNPs were orally administered to Sprague-Dawley rats at various concentrations (0-1000 mg/kg body weight/day) for 2 weeks. No effect was found on the plasma levels of ALT, AST and ALP in all treated rat groups, and no significant change in the activities of CYP1A, CYP2C, CYP2D, CYP2E1 and CYP3A was observed for all tested AgNP doses. The results correlated with the observation that no AgNPs were detected in the liver sections of the tested rats. However, the in vitro system using rat liver microsomes demonstrated a strong inhibition of CYP2C (IC(50) = 28 µg/mL) and CYP2D (IC(50) = 23 µg/mL) activities, but not of CYP1A, CYP2E1 and CYP3A activities (IC(50) > 100 µg/mL) at concentrations up to 100 µg/mL of AgNPs. The inhibitory effect of AgNPs on these CYPs indicates the possibility of the AgNP-drug interaction when co-administered with some medicines and this may cause adverse effects to patients.
Asunto(s)
Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Hígado/enzimología , Nanopartículas del Metal/efectos adversos , Plata/toxicidad , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Análisis de Varianza , Animales , Aspartato Aminotransferasas/sangre , Sistema Enzimático del Citocromo P-450/metabolismo , Concentración 50 Inhibidora , Nanopartículas del Metal/toxicidad , Microscopía Electrónica de Transmisión , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Maintaining youthful skin from photoaging with natural products, including essential oils, is a vital strategy that has piqued the interest of researchers in the pharmaceutical and cosmetic industries. This research aimed to investigate the protective properties of Zingiber montanum (J. Koenig) Link ex A. Dietr. essential oil against ultraviolet B (UVB)-induced skin damage and photoaging in normal human dermal fibroblast (HDFn) cells. The essential oil was extracted from fresh plant rhizomes using solvent-free microwave extraction. Its antiphotoaging properties in HDFn cells were investigated using reactive oxygen species (ROS)-scavenging, wound healing, matrix metalloproteinases (MMP-1, MMP-3, and MMP-9) expression, procollagen synthesis, and elastase and tyrosinase inhibitory assays. The results showed that the test oil exhibited no significant toxicity in HDFn at concentrations up to 10 mg/mL, with cell viability exceeding 90%. Following UVB irradiation at 30 mJ/cm2, Z. montanum oil demonstrated time and concentration-dependent ROS radical scavenging capabilities. In a cell migration assay, the essential oil demonstrated wound-healing properties. Z. montanum oil suppressed the expression of MMPs and enhanced the synthesis of type I procollagen at a concentration of 0.1-1 mg/mL. In addition, 0.1-1 mg/mL Z. montanum oil inhibited elastase activity in a concentration-dependent manner but did not affect tyrosinase activity. From these findings, the essential oil of Z. montanum could have potential applications in developing cosmeceutical products to prevent skin photoaging.
RESUMEN
A designed repeat scaffold protein (AnkGAG1D4) recognizing the human immunodeficiency virus-1 (HIV-1) capsid (CA) was formerly established with antiviral assembly. Here, we investigated the molecular mechanism of AnkGAG1D4 function during the late stages of the HIV-1 replication cycle. By applying stimulated emission-depletion (STED) microscopy, Gag polymerisation was interrupted at the plasma membrane. Disturbance of Gag polymerisation triggered Gag accumulation inside producer cells and trapping of the CD81 tetraspanin on the plasma membrane. Moreover, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) experiments were performed to validate the packaging efficiency of RNAs. Our results advocated that AnkGAG1D4 interfered with the Gag precursor protein from selecting HIV-1 and cellular RNAs for encapsidation into viral particles. These findings convey additional information on the antiviral activity of AnkGAG1D4 at late stages of the HIV-1 life cycle, which is potential for an alternative anti-HIV molecule.
Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , VIH-1 , Antivirales/farmacología , Cápside/metabolismo , Proteínas de la Cápside/genética , VIH-1/genética , VIH-1/metabolismo , Humanos , ARN , ARN Viral/metabolismo , Tetraspaninas , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
Silver nanoparticles have been used in numerous commercial products, including textiles, to prevent bacterial growth. Meanwhile, there is increasing concern that exposure to these nanoparticles may cause potential adverse effects on humans as well as the environment. This study determined the quantity of silver released from commercially claimed nanosilver and laboratory-prepared silver coated fabrics into various formulations of artificial sweat, each made according to AATCC, ISO and EN standards. For each fabric sample, the initial amount of silver and the antibacterial properties against the model Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria on each fabric was investigated. The results showed that silver was not detected in some commercial fabrics. Furthermore, antibacterial properties of the fabrics varied, ranging from 0% to greater than 99%. After incubation of the fabrics in artificial sweat, silver was released from the different fabrics to varying extents, ranging from 0 mg/kg to about 322 mg/kg of fabric weight. The quantity of silver released from the different fabrics was likely to be dependent on the amount of silver coating, the fabric quality and the artificial sweat formulations including its pH. This study is the unprecedented report on the release of silver nanoparticles from antibacterial fabrics into artificial sweat. This information might be useful to evaluate the potential human risk associated with the use of textiles containing silver nanoparticles.
Asunto(s)
Antibacterianos/análisis , Antiinfecciosos Locales , Nanopartículas del Metal/análisis , Plata/análisis , Sudor/química , Textiles/análisis , Antibacterianos/toxicidad , Escherichia coli/efectos de los fármacos , Ensayo de Materiales , Nanopartículas del Metal/toxicidad , Pruebas de Sensibilidad Microbiana , Plata/toxicidad , Staphylococcus aureus/efectos de los fármacos , Textiles/microbiologíaRESUMEN
Regenerative medicine research requires animal experiments to evaluate the treatment effects. According to the 3Rs principles, alternative models have been developed and utilized to evaluate the efficacy and safety of new products. Three-dimensional (3D) cell cultures have been recognized for their relevant structures and biological functions akin to native tissues. They can better represent in vivo conditions than two-dimensional (2D) cell cultures. Herein, we present a fast and simple technique for the construction of 3D dermal fibroblasts (3D-DFs) without exogenous scaffolds. The 3D-DFs can be obtained within 3 days by seeding DFs at a level that exceeds their confluent density and culturing in the presence of ascorbic acid. The 3D-DFs had a compact multilayer structure, as revealed from their histology. The collagen content of the resulting 3D-DFs drastically increased compared to in a monolayer. The 3D-DF-derived extracellular matrix can serve for the 3D culturing of other cells. A gap closure assay was performed with the 3D-DFs to represent a 3D-wounded dermal model. Interestingly, the multilayered structure of the 3D-DFs could be regenerated after wounding even when cultured in the absence of ascorbic acid. Moreover, skin grafting of the 3D-DFs was demonstrated in vitro using wounded full-thickness skin models as an alternative to animal experiments. The 3D-DFs will potentially be useful for regenerative medicine or as tissue models for in vitro studies.
Asunto(s)
Técnicas de Cultivo de Célula , Fibroblastos/fisiología , Medicina Regenerativa , Alternativas al Uso de Animales , Humanos , Factores de Tiempo , Andamios del TejidoRESUMEN
Bombyx mori silk extracts, derived from the cocoon degumming process of draw and dye silk in the textile industry, are mainly composed of sericin protein. To add value to the Thai silk extracts, and hence the silk industry, a simple enrichment process was recently developed and the enriched silk extracts were then applied in nano-cosmeceutical products and nano-delivery systems. In this study, the protective effect of Thai silk extracts from three different strains of Bombyx mori on the drug-induced phototoxicity was evaluated in vitro using chlorpromazine (CPZ), a commonly used antipsychotic drug, as a representative phototoxic drug. The human epidermal A431 cell line and reconstructed human epidermis (RhE) model were used as the in vitro skin model. The silk extracts significantly improved the viability of A431 cells after CPZ exposure and ultraviolet A (UVA) irradiation, as shown by the significantly increased CPZ and UVA IC50 values and the decreased proportion of apoptotic cells. The protective effect of these silk extracts against the CPZ-induced UVA-phototoxicity in A431 cells was associated with the attenuation of intracellular oxidative stress via an increased intracellular glutathione level. Likewise, the silk extracts exhibited a protective effect on the CPZ-induced UVA-phototoxicity in the RhE model, in terms of an improved tissue viability and attenuation of the released inflammatory cytokine, interleukin-1α. These findings support the potential usefulness of silk extracts in novel applications, especially in the protection of drug-induced phototoxicity.
Asunto(s)
Epidermis/efectos de los fármacos , Sustancias Protectoras/química , Seda/química , Rayos Ultravioleta , Animales , Bombyx/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Clorpromazina/farmacología , Citocinas/metabolismo , Epidermis/patología , Epidermis/efectos de la radiación , Glutatión , Humanos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Seda/metabolismo , Piel Artificial , TailandiaRESUMEN
We investigated cellular uptake behavior and biological responses of spherical and fibrous titanate nanomaterials in human monocyte THP-1 cells. Two titanate nanofibers (TiNFs), namely TF-1 and TF-2, were synthesized from anatase TiO2 nanoparticles (TNPs) via hydrothermal treatment. The synthesized TiNFs and TNPs were thoroughly characterized for their size, crystallinity, surface area and surface pH. TF-1 (â¼2 µm in length) was amorphous with an acidic surface, while TF-2 (â¼7 µm in length) was brookite with a basic surface. The results demonstrated that none of these titanate nanomaterials resulted in significant cytotoxicity, even at the highest doses tested (50 µg/ml), consistent with an absence of ROS generation and lack of change of mitochondrial membrane potential. While no cytotoxic effect was found in the titanate nanomaterials, TF-2 tended to decrease the proliferation of THP-1 cells. Furthermore, TF-2 resulted in an inflammatory cytokine response, as evidenced by dramatic induction of IL-8 and TNF-α release in TF2 but not TF-1 nor TNPs. These results suggest that shape of titanate nanomaterials plays an important role in cellular internalization, while surface pH may play a prominent role in inflammatory response in THP-1 cells.
RESUMEN
Development of reliable cell-based nanotoxicology assays is important for evaluation of potentially hazardous engineered nanomaterials. Challenges to producing a reliable assay protocol include working with nanoparticle dispersions and living cell lines, and the potential for nano-related interference effects. Here we demonstrate the use of a 96-well plate design with several measurement controls and an interlaboratory comparison study involving five laboratories to characterize the robustness of a nanocytotoxicity MTS cell viability assay based on the A549 cell line. The consensus EC50 values were 22.1 mg/L (95% confidence intervals 16.9 mg/L to 27.2 mg/L) and 52.6 mg/L (44.1 mg/L to 62.6 mg/L) for positively charged polystyrene nanoparticles for the serum-free and serum conditions, respectively, and 49.7 µmol/L (47.5 µmol/L to 51.5 µmol/L) and 77.0 µmol/L (54.3 µmol/L to 99.4 µmol/L) for positive chemical control cadmium sulfate for the serum-free and serum conditions, respectively. Results from the measurement controls can be used to evaluate the sources of variability and their relative magnitudes within and between laboratories. This information revealed steps of the protocol that may need to be modified to improve the overall robustness and precision. The results suggest that protocol details such as cell line ID, media exchange, cell handling, and nanoparticle dispersion are critical to ensure protocol robustness and comparability of nanocytotoxicity assay results. The combination of system control measurements and interlaboratory comparison data yielded insights that would not have been available by either approach by itself.
Asunto(s)
Sustancias Peligrosas/toxicidad , Laboratorios/estadística & datos numéricos , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Pruebas de Toxicidad/estadística & datos numéricos , Células A549 , Humanos , Laboratorios/normas , Reproducibilidad de los Resultados , Pruebas de Toxicidad/normasRESUMEN
Troglitazone (TRO)-induced cytotoxicity was investigated in HepG2 cells. The cells were exposed to TRO as well as rosiglitazone (RSG) at concentrations of 0, 25, 50 and 75 microM for 48 h. Total proteins were separated by two-dimensional electrophoresis and visualized by silver staining. We focused on a protein spot at an approximate molecular weight of 35 kDa and isoelectric point (pI) of 5.7, which appeared only with the cytotoxic concentrations (50 and 75 microM) of TRO, but not with the low concentration (25 microM) of TRO or any concentrations of RSG. This protein spot was subjected to amino acid sequence analysis and identified as ribosomal protein P0 (P0). Interestingly, without any significant induction of its protein and mRNA, P0 was dephosphorylated depending on the concentration- and time-dependent manner of TRO-induced cytotoxicity. Pretreatment with a general caspase inhibitor, Z-VAD.fmk, prevented cleavage of caspase-3 but demonstrated a slight improvement of cytotoxicity induced by TRO. Thus, these effects could not prevent the dephosphorylation of P0. Our results strongly suggest that a post-translational modification, dephosphorylation, of P0 is associated with TRO-induced cytotoxicity.
Asunto(s)
Antineoplásicos/toxicidad , Cromanos/toxicidad , Fosfoproteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Tiazolidinedionas/toxicidad , Secuencia de Aminoácidos , Western Blotting , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ecocardiografía , Humanos , Peróxido de Hidrógeno/toxicidad , Inmunoprecipitación , Focalización Isoeléctrica , Datos de Secuencia Molecular , Peso Molecular , Oxidantes/toxicidad , Fosfoproteínas/química , Fosforilación , Proteómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ribosómicas/química , Transducción de Señal/fisiología , TroglitazonaRESUMEN
DNA microarray technology was developed as a tool for simultaneously measuring a number of gene expression changes, and has been applied for investigations of toxicity assessments of chemicals. In this study, we used a typical hepatotoxicant, thioacetamide (TA), to find correlations between the extent of hepatotoxicity and certain gene expression patterns or specific gene expression profiles. TA was intraperitoneally administered at high (400 mg/kg), medium (150 mg/kg) or low (50 mg/kg) dose (four rats per group) and then the serum and liver were collected at the indicated time (6, 12, 24, 36 and 48 h). Serum biochemical markers were measured and hepatic mRNA expression profiles were analyzed by a DNA microarray. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased by TA-administration in a dose-dependent manner and reached the maximum at 24h. Hierarchical clustering analysis of all dosage groups revealed in 2 major clusters, distinguished by an early (6 and 12h) and a late (24, 36 and 48 h) phase. The early and late phase clusters were sorted in time- and dose-dependent manners. The major gene expression profile obtained by quality-threshold (QT) clustering analysis showed the same maximal toxic time as that estimated by the serum biochemical markers. The individual expression profiles of the candidate genes selected in our previous studies and the simultaneous gene expression patterns measured by five typical hepatotoxicants including TA also reflected the hepatotoxicity of TA. These findings suggest that the potential toxic effects appearing as gene expression changes are independent of the dosage of TA. This study suggested that the major gene expression profile estimated by QT clustering would be a sensitive marker of hepatotoxicity.
Asunto(s)
Perfilación de la Expresión Génica , Tioacetamida/toxicidad , Alanina Transaminasa/biosíntesis , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/biosíntesis , Aspartato Aminotransferasas/sangre , Biomarcadores/análisis , Relación Dosis-Respuesta a Droga , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Control de Calidad , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Sensibilidad y EspecificidadRESUMEN
Effects of the hydroethanolic extract of Phikud Navakot (PN), a Thai traditional remedy, on human cytochrome P450s (CYPs) were investigated in vitro. Selective substrates of CYPs were used to investigate the effects and kinetics of PN on CYP inhibition using human liver microsomes. Primary human hepatocytes were used to assess the inductive effects of PN on CYP enzyme activities and protein expressions. The results showed that PN inhibited the activities of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 with half maximal inhibitory concentration (IC50) values of 13, 62, 67, and 88 µg/mL, respectively. Meanwhile, it had no effect on the activities of CYP2C19 and CYP2E1 (IC50 > 1 mg/mL). PN exhibited competitive inhibition of CYP1A2 (Ki = 34 µg/mL), mixed type inhibition of CYP2C9 and CYP2D6 (Ki = 80 and 12 µg/mL, respectively), and uncompetitive inhibition of CYP3A4 (Ki = 150 µg/mL). PN did not have an inductive effect on CYP1A2, CYP2C9, CYP2C19 and CYP3A4 in primary human hepatocytes, which is an advantageous characteristic of the extract. However the extract may cause herb-drug interactions via inhibition of CYP1A2, CYP2C9, CYP2D6 and CYP3A4, and precautions should be taken when PN is coadministered with drugs that are metabolized by these CYP enzymes.
Asunto(s)
Inductores de las Enzimas del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Extractos Vegetales/farmacología , Células Cultivadas , Inhibidores Enzimáticos del Citocromo P-450/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos , Cinética , Extractos Vegetales/toxicidadRESUMEN
Troglitazone (TRO), an effective thiazolidinedione antidiabetic agent, was reported to produce idiosyncratic hepatotoxic effects in some individuals. In contrast, rosiglitazone (RSG), in the same group of agents, has no significant toxic effects and now is widely used. In this study, human hepatoma (HepG2) cell lines were exposed to various doses of TRO as well as RSG (0, 25, 50, and 75 microM) for 48 h. Cell lysates were separated by two-dimensional electrophoresis, and the gels were stained with coomassie brilliant blue to compare the spot profiles. The greatest protein expression at a MW of 75 kDa and isoelectric point of 5 was specifically increased with TRO treatments of 50 and 75 microM. The spot was identified as a mixture of immunoglobulin heavy chain binding protein (BiP) and, to a lesser extent, protein disulfide isomerase-related protein (PDIrp). Immunoblot analyses showed that the BiP protein was dose-dependently increased by TRO treatment and, to a lower degree, by RSG. These effects were also correlated with the high induction of BiP mRNA by TRO (50 and 75 microM) and the lower induction by RSG. However, both treatments showed no significant effects on PDIrp expression. The toxic effects of TRO in relation to the overexpression of BiP were also demonstrated in HLE cells, another human hepatoma cell line. In HLE cells, the inhibition of BiP expression by small interference RNA rendered cells more susceptible to the toxic effects of TRO. These results suggest that the overexpression of BiP is a defense mechanism of the endoplasmic reticulum in response to TRO-induced toxicity.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Cromanos/toxicidad , Proteínas de Choque Térmico/metabolismo , Hipoglucemiantes/toxicidad , Neoplasias Hepáticas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Tiazolidinedionas/toxicidad , Secuencia de Aminoácidos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Chaperón BiP del Retículo Endoplásmico , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Proteína Disulfuro Isomerasas , Proteínas/genética , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rosiglitazona , Transfección , TroglitazonaRESUMEN
Troglitazone is a thiazolidinedione antidiabetic agent with insulin-sensitizing activities that was withdrawn from the market in 2000 due to its association with idiosyncratic hepatotoxicity. To address the suspected autoantibody production associated with troglitazone, we investigated autoantibodies in sera from patients with type II diabetes mellitus with troglitazone-induced liver dysfunction. Two female patients (47- and 70-year-old) ceased taking troglitazone (400 mg/day) after 23.5 and 16 weeks, respectively, due to increased serum ALT. Using two-dimensional electrophoresis and amino acid sequence analyses, aldolase B was identified as an autoantigen that reacted with antibodies in sera from both patients. The titer of anti-aldolase B remained high for several weeks after stopping troglitazone administration. The mean reactivity of autoantibodies to aldolase B determined by ELISA with sera of patients with chronic hepatitis (n = 40) and liver cirrhosis (n = 40) was significantly higher (p < 0.05 and p < 0.001, respectively) than with sera of healthy subjects (n = 80). These findings suggest that liver injury may cause the appearance of autoantibodies to aldolase B which may then aggravate the hepatitis. In addition, the anti-aldolase B titer might indicate the severity of liver dysfunction.
Asunto(s)
Autoanticuerpos/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas , Cromanos/efectos adversos , Fructosa-Bifosfato Aldolasa/inmunología , Hipoglucemiantes/efectos adversos , Hígado/efectos de los fármacos , Tiazolidinedionas/efectos adversos , Anciano , Alanina Transaminasa/sangre , Autoanticuerpos/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Cromanos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Hipoglucemiantes/uso terapéutico , Immunoblotting , Hígado/enzimología , Hígado/inmunología , Cirrosis Hepática/sangre , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/enzimología , Cirrosis Hepática/inmunología , Hepatopatías/sangre , Hepatopatías/enzimología , Hepatopatías/inmunología , Masculino , Persona de Mediana Edad , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Fracciones Subcelulares/inmunología , Tiazolidinedionas/uso terapéutico , TroglitazonaRESUMEN
Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with metal ion, leading to the change of signals for the naked-eyes which is very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of dithizone with silver using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver-dithizone complexes was supported by UV-Vis spectroscopy, FT-IR spectrum that were simulated by using B3LYP/6-31G(d,p) and (1)H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom with minimized binding energies of silver-dithizone interaction. Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.
Asunto(s)
Ditizona/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Teoría Cuántica , Plata/química , Aniones , Dimetilsulfóxido/química , Ligandos , Soluciones , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , TermodinámicaRESUMEN
Although immortalized cells established from cancerous cells have been widely used for studies in nanotoxicology studies, the reliability of the results derived from immortalized cells has been questioned because of their different characteristics from normal cells. In the present study, human primary erythroid cells in liquid culture were used as an in vitro hematological cell model for investigation of the nanotoxicity of silver nanoparticles (AgNPs) and comparing the results to the immortalized hematological cell lines HL60 and K562. The AgNPs caused significant cytotoxic effects in the primary erythroid cells, as shown by the decreased cell viability and induction of intracellular ROS generation and apoptosis, whereas they showed much lower cytotoxic and apoptotic effects in HL60 and K562 cells and did not induced ROS generation in these cell lines. Scanning electron microcopy revealed an interaction of AgNPs to the cell membrane in both primary erythroid and immortalized cells. In addition, AgNPs induced hemolysis in the primary erythroid cells in a dose-dependent manner, and transmission electron microcopy analysis revealed that AgNPs damaged the erythroid cell membrane. Taken together, these results suggest that human primary erythroid cells in liquid culture are a more sensitive alternative in vitro hematological model for nanotoxicology studies.