Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nanomedicine ; 20: 102016, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31158499

RESUMEN

Nanoengineering the topology of titanium (Ti) implants has the potential to enhance cytocompability and biocompatibility properties as implant surfaces play a decisive role in determining clinical success. Despite developments in various surface engineering strategies, antibacterial properties of Ti still need to be enhanced. Here a facile, cost-effective hydrothermal route was used to develop nano-patterned structures on a Ti surface. Changing hydrothermal treatment parameters such as temperature, pressure, and time, resulted in various topographies, crystal phases, and hydrophobicity. Specifically, hydrothermal treatment performed at 225 °C for 5 h, presented a novel topography with nanoflower features, exhibited no mammalian cell cytotoxicity for a time period of 14 days, and increased calcium deposition from osteoblasts. Treated samples also demonstrated antibacterial properties (without resorting to the use of antibiotics) against Staphylococcus aureus and methicillin resistant Staphylococcus aureus. In conclusion, hydrothermal oxidation on an etched Ti surface can generate surface properties that have excellent prospects for the biomedical field.


Asunto(s)
Materiales Biocompatibles/farmacología , Nanoestructuras/química , Temperatura , Titanio/farmacología , Agua/farmacología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Nanoestructuras/ultraestructura , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Oxidación-Reducción , Humectabilidad , Difracción de Rayos X
2.
Vet Res Commun ; 48(2): 1149-1159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214798

RESUMEN

Porcine Circovirus 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome (PMWS) of swine and is one of the reasons for severe economic loss in swine industry. In India, there is a considerable prevalence rate of PCV2 infection in pig population, PCV2d being the most prominent genotype. Proper sero-diagnosis and sero-surveillance of the disease is formulated as an effective control measure. In this study, a recombinant capsid protein-based single serum dilution indirect ELISA was developed for determination of antibody titre of the infected pigs. The capsid protein (Cap) of PCV2d was produced in Saccharomyces cerevisiae cells and the capsid protein was purified by affinity chromatography. This recombinant protein was used as a coating antigen to develop a cost effective, highly sensitive and specific single serum dilution ELISA. The in-house developed ELISA was optimized to be used in a 1:200 single serum dilution. The developed ELISA along with a commercial ELISA kit were compared with a sensitive immuno-peroxidase assay (IPMA) by receiver-operating characteristics (ROC) test. Our results showed that the developed single serum dilution ELISA had a higher sensitivity and specificity in comparison to the commercial ELISA. The area under the ROC curve (AUC) also confirmed that the developed ELISA had a better overall diagnostic performance in comparison to the commercial ELISA kit.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Animales , Porcinos , Proteínas de la Cápside/genética , Circovirus/genética , Anticuerpos Antivirales , Infecciones por Circoviridae/diagnóstico , Infecciones por Circoviridae/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Proteínas Recombinantes
3.
ACS Appl Mater Interfaces ; 15(4): 5086-5098, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669233

RESUMEN

High-performance energy storage devices (HPEDs) play a critical role in the realization of clean energy and thus enable the overarching pursuit of nonpolluting, green technologies. Supercapacitors are one class of such lucrative HPEDs; however, a serious limiting factor of supercapacitor technology is its sub-par energy density. This report presents hitherto unchartered pathway of physical deformation, chemical dealloying, and microstructure engineering to produce ultrahigh-capacitance, energy-dense NiMn alloy electrodes. The activated electrode delivered an ultrahigh specific-capacitance of 2700 F/cm3 at 0.5 A/cm3. The symmetric device showcased an excellent energy density of 96.94 Wh/L and a remarkable cycle life of 95% retention after 10,000 cycles. Transmission electron microscopy and atom probe tomography studies revealed the evolution of a unique hierarchical microstructure comprising fine Ni/NiMnO3 nanoligaments within MnO2-rich nanoflakes. Theoretical analysis using density functional theory showed semimetallic nature of the nanoscaled oxygen-vacancy-rich NiMnO3 structure, highlighting enhanced carrier concentration and electronic conductivity of the active region. Furthermore, the geometrical model of NiMnO3 crystals revealed relatively large voids, likely providing channels for the ion intercalation/de-intercalation. The current processing approach is highly adaptable and can be applied to a wide range of material systems for designing highly efficient electrodes for energy-storage devices.

4.
Bioengineering (Basel) ; 10(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671615

RESUMEN

Blood-contacting titanium-based implants such as endovascular stents and heart valve casings are prone to blood clotting due to improper interactions at the surface level. In complement, the current clinical demand for cardiovascular implants is at a new apex. Hence, there is a crucial necessity to fabricate an implant with optimal mechanical properties and improved blood compatibility, while simultaneously interacting differentially with cells and other microbial agents. The present study intends to develop a superhydrophobic implant surface with the novel micro-nano topography, developed using a facile thermochemical process. The surface topography, apparent contact angle, and crystal structure are characterized on different surfaces. The hemo/blood compatibility on different surfaces is assessed by evaluating hemolysis, fibrinogen adsorption, cell adhesion and identification, thrombin generation, complement activation, and whole blood clotting kinetics. The results indicate that the super-hemo/hydrophobic micro-nano titanium surface improved hemocompatibility by significantly reducing fibrinogen adsorption, platelet adhesion, and leukocyte adhesion. Thus, the developed surface has high potential to be used as an implant. Further studies are directed towards analyzing the mechanisms causing the improved hemocompatibility of micro/nano surface features under dynamic in vitro and in vivo conditions.

5.
J Biomed Mater Res A ; 110(7): 1314-1328, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35188338

RESUMEN

Micro/nano scale surface modifications of titanium based orthopedic and cardiovascular implants has shown to augment biocompatibility. However, bacterial infection remains a serious concern for implant failure, aggravated by increasing antibiotic resistance and over usage of antibiotics. Bacteria cell adhesion on implant surface leads to colonization and biofilm formation resulting in morbidity and mortality. Hence, there is a need to develop new implant surfaces with high antibacterial properties. Recent developments have shown that superhydrophobic surfaces prevent protein and bacteria cell adhesion. In this study, a thermochemical treatment was used modify the surface properties for high efficacy antibacterial activity on titanium surface. The modification led to a micro-nano surface topography and upon modification with polyethylene glycol (PEG) and silane the surfaces were superhydrophilic and superhydrophobic, respectively. The modified surfaces were characterized for morphology, wettability, chemistry, corrosion resistance and surface charge. The antibacterial capability was characterized with Staphylococcus aureus and Escherichia coli by evaluating the bacteria cell inhibition, adhesion kinetics, and biofilm formation. The results indicated that the superhydrophobic micro-nano structured titanium surface reduced bacteria cell adhesion significantly (>90%) and prevented biofilm formation compared to the unmodified titanium surface after 24 h of incubation.


Asunto(s)
Antibacterianos , Titanio , Antibacterianos/química , Antibacterianos/farmacología , Adhesión Bacteriana , Escherichia coli , Staphylococcus aureus , Propiedades de Superficie , Titanio/química , Titanio/farmacología , Humectabilidad
6.
In Vitro Model ; 1(3): 241-247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37519331

RESUMEN

SARS-CoV-2 is a pandemic coronavirus that causes severe respiratory disease (COVID-19) in humans and is responsible for millions of deaths around the world since early 2020. The virus affects the human respiratory cells through its spike (S) proteins located at the outer shell. To monitor the rapid spreading of SARS-CoV-2 and to reduce the deaths from the COVID-19, early detection of SARS-CoV-2 is of utmost necessity. This report describes a flexible colorimetric biosensor capable of detecting the S protein of SARS-CoV-2. The colorimetric biosensor is made of polyurethane (PU)-polydiacetylene (PDA) nanofiber composite that was chemically functionalized to create a binding site for the receptor molecule-nucleocapsid antibody (anti-N) protein of SARS-CoV-2. After the anti-N protein conjugation to the functionalized PDA fibers, the PU-PDA-NHS-anti fiber was able to detect the S protein of SARS-CoV-2 at room temperature via a colorimetric transition from blue to red. The PU-PDA nanofiber-based biosensors are flexible and lightweight and do not require a power supply such as a battery when the colorimetric detection to S protein occurs, suggesting a sensing platform of wearable devices and personal protective equipment such as face masks and medical gowns for real-time monitoring of virus contraction and contamination. The wearable biosensors could significantly power mass surveillance technologies to fight against the COVID-19 pandemic. Supplementary Information: The online version contains supplementary material available at 10.1007/s44164-022-00022-z.

7.
Mater Sci Eng C Mater Biol Appl ; 128: 112315, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474866

RESUMEN

Implant surface plays a crucial role in improving osseointegration and long-term implant life. When the implant comes in contact with the bone tissue, the bone marrow mesenchymal cells interact with the implant surface and the surface properties such as morphology, wettability, mechanical properties and chemistry influences cell migration, proliferation and differentiation. Different surface modification strategies such as ceramic coatings, surface dealloying, and surface topography modifications for improving osteointegration have been investigated. However, studies have not yet established which of the surface property is more influential. In this study, titanium surfaces were treated hydrothermally with sodium hydroxide and sulfuric acid separately. This treatment led to the development of two unique surface topography at nanoscale. These modified surfaces were characterized for surface morphology, wettability, chemistry, and crystallinity. Cytotoxicity, cell adhesion, proliferation, morphology, and differentiation of adipose derived stem cells on modified surfaces was investigated. The results indicate that wettability does influence initial cell adhesion. However, the surface morphology can play major role in cell spreading, proliferation and differentiation. The results indicate that titanium surfaces treated hydrothermally with sodium hydroxide led to a nanoporous architecture that promoted appropriate cell interaction with the surface promoting osteoblastic lineage.


Asunto(s)
Osteogénesis , Titanio , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Oseointegración , Osteoblastos , Células Madre , Propiedades de Superficie , Titanio/farmacología
8.
Mater Adv ; 2(18): 5824-5842, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671743

RESUMEN

Titanium and its alloys are widely used in different biomaterial applications due to their remarkable mechanical properties and bio-inertness. However, titanium-based materials still face some challenges, with an emphasis on hemocompatibility. Blood-contacting devices such as stents, heart valves, and circulatory devices are prone to thrombus formation, restenosis, and inflammation due to inappropriate blood-implant surface interactions. After implantation, when blood encounters these implant surfaces, a series of reactions takes place, such as protein adsorption, platelet adhesion and activation, and white blood cell complex formation as a defense mechanism. Currently, patients are prescribed anticoagulant drugs to prevent blood clotting, but these drugs can weaken their immune system and cause profound bleeding during injury. Extensive research has been done to modify the surface properties of titanium to enhance its hemocompatibility. Results have shown that the modification of surface morphology, roughness, and chemistry has been effective in reducing thrombus formation. The main focus of this review is to analyze and understand the different modification techniques on titanium-based surfaces to enhance hemocompatibility and, consequently, recognize the unresolved challenges and propose scopes for future research.

9.
ACS Omega ; 5(14): 8108-8120, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32309720

RESUMEN

For decades, titanium and its alloys have been established as a biocompatible material for cardiovascular medical devices such as heart valves, stents, vascular grafts, catheters, etc. However, thrombosis is one of the reasons for implant failure, where blood clot forms on the implant surface, thus obstructing the flow of the blood and that leads to some serious complications. Various surface modification techniques such as heparin modification, albumin coating, surface anodization, plasma etching, and hydrothermal treatments have been explored to improve the hemocompatibility of titanium-based materials. However, there are several limitations related to the robustness of the surfaces and long-term efficacy in vivo. In this study, titanium and its alloy Ti-6Al-4V were hydrothermally treated to form nanostructured surfaces with the aim to enhance their hemocompatibility. These modified surfaces were characterized for their wettability, surface morphology, surface chemistry, and crystallinity. The hemocompatibility of these surfaces was characterized by evaluating blood plasma protein adsorption, platelet adhesion and activation, platelet-leukocyte complex formation, and whole blood clotting. The results indicate lower fibrinogen adsorption, cell adhesion, platelet activation, and whole blood clotting on hydrothermally treated surfaces. Thus, these surfaces may be a promising approach to prevent thrombosis for several titanium blood-contacting medical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA