Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 44(17): 5602-5611, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615064

RESUMEN

Atrophy related to multiple sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. We modeled the volumetric trajectories of brain structures across the entire lifespan using 40,944 subjects (38,295 healthy controls and 2649 MS patients). Then, we estimated the chronological progression of MS by assessing the divergence of lifespan trajectories between normal brain charts and MS brain charts. Chronologically, the first affected structure was the thalamus, then the putamen and the pallidum (around 4 years later), followed by the ventral diencephalon (around 7 years after thalamus) and finally the brainstem (around 9 years after thalamus). To a lesser extent, the anterior cingulate gyrus, insular cortex, occipital pole, caudate and hippocampus were impacted. Finally, the precuneus and accumbens nuclei exhibited a limited atrophy pattern. Subcortical atrophy was more pronounced than cortical atrophy. The thalamus was the most impacted structure with a very early divergence in life. Our experiments showed that lifespan models of most impacted structures could be an important tool for future preclinical/prodromal prognosis and monitoring of MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Longevidad , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Atrofia/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología
2.
Epilepsy Behav ; 140: 109084, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702054

RESUMEN

BACKGROUND: Structural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE. METHODS: Thirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox. RESULTS: An increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE. CONCLUSIONS: We report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy.


Asunto(s)
Mapeo Encefálico , Epilepsia Generalizada , Humanos , Mapeo Encefálico/métodos , Mesencéfalo/diagnóstico por imagen , Epilepsia Generalizada/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Inmunoglobulina E
3.
Alzheimers Dement ; 19(8): 3283-3294, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36749884

RESUMEN

INTRODUCTION: The three clinical variants of frontotemporal dementia (behavioral variant [bvFTD], semantic dementia, and progressive non-fluent aphasia [PNFA]) are likely to develop over decades, from the preclinical stage to death. METHODS: To describe the long-term chronological anatomical progression of FTD variants, we built lifespan brain charts of normal aging and FTD variants by combining 8022 quality-controlled MRIs from multiple large-scale data-bases, including 107 bvFTD, 44 semantic dementia, and 38 PNFA. RESULTS: We report in this manuscript the anatomical MRI staging schemes of the three FTD variants by describing the sequential divergence of volumetric trajectories between normal aging and FTD variants. Subcortical atrophy precedes focal cortical atrophy in specific behavioral and/or language networks, with a "radiological" prodromal phase lasting 8-10 years (time elapsed between the first structural alteration and canonical cortical atrophy). DISCUSSION: Amygdalar and striatal atrophy can be candidate biomarkers for future preclinical/prodromal FTD variants definitions. HIGHLIGHTS: We describe the chronological MRI staging of the most affected structures in the three frontotemporal dementia (FTD) syndromic variants. In behavioral variant of FTD (bvFTD): bilateral amygdalar, striatal, and insular atrophy precedes fronto-temporal atrophy. In semantic dementia: bilateral amygdalar atrophy precedes left temporal and hippocampal atrophy. In progressive non-fluent aphasia (PNFA): left striatal, insular, and thalamic atrophy precedes opercular atrophy.


Asunto(s)
Afasia , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Atrofia , Lenguaje
4.
Hum Brain Mapp ; 43(10): 3270-3282, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388950

RESUMEN

In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/patología , Atrofia/diagnóstico por imagen , Atrofia/patología , Disfunción Cognitiva/patología , Progresión de la Enfermedad , Hipocampo/patología , Humanos , Longevidad , Imagen por Resonancia Magnética/métodos
5.
Stroke ; 52(5): 1741-1750, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33657856

RESUMEN

BACKGROUND AND PURPOSE: Many neurological or psychiatric diseases affect the hippocampus during aging. The study of hippocampal regional vulnerability may provide important insights into the pathophysiological mechanisms underlying these processes; however, little is known about the specific impact of vascular brain damage on hippocampal subfields atrophy. METHODS: To analyze the effect of vascular injuries independently of other pathological conditions, we studied a population-based cohort of nondemented older adults, after the exclusion of people who were diagnosed with neurodegenerative diseases during the 14-year clinical follow-up period. Using an automated segmentation pipeline, 1.5T-magnetic resonance imaging at inclusion and 4 years later were assessed to measure both white matter hyperintensities and hippocampal subfields volume. Annualized rates of white matter hyperintensity progression and annualized rates of hippocampal subfields atrophy were then estimated in each participant. RESULTS: We included 249 participants in our analyses (58% women, mean age 71.8, median Mini-Mental State Evaluation 29). The volume of the subiculum at baseline was the only hippocampal subfield volume associated with total, deep/subcortical, and periventricular white matter hyperintensity volumes, independently of demographic variables and vascular risk factors (ß=-0.17, P=0.011; ß=-0.25, P=0.020 and ß=-0.14, P=0.029, respectively). In longitudinal measures, the annualized rate of subiculum atrophy was significantly higher in people with the highest rate of deep/subcortical white matter hyperintensity progression, independently of confounding factors (ß=-0.32, P=0.014). CONCLUSIONS: These cross-sectional and longitudinal findings highlight the links between vascular brain injuries and a differential vulnerability of the subiculum within the hippocampal loop, unbiased of the effect of neurodegenerative diseases, and particularly when vascular injuries affect deep/subcortical structures.


Asunto(s)
Trastornos Cerebrovasculares/patología , Hipocampo/patología , Sustancia Blanca/patología , Anciano , Atrofia/diagnóstico por imagen , Atrofia/patología , Trastornos Cerebrovasculares/diagnóstico por imagen , Estudios Transversales , Progresión de la Enfermedad , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Estudios Longitudinales , Espectroscopía de Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen
6.
Hum Brain Mapp ; 42(5): 1287-1303, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385303

RESUMEN

Previous literature about the structural characterization of the human cerebellum is related to the context of a specific pathology or focused in a restricted age range. In fact, studies about the cerebellum maturation across the lifespan are scarce and most of them considered the cerebellum as a whole without investigating each lobule. This lack of study can be explained by the lack of both accurate segmentation methods and data availability. Fortunately, during the last years, several cerebellum segmentation methods have been developed and many databases comprising subjects of different ages have been made publically available. This fact opens an opportunity window to obtain a more extensive analysis of the cerebellum maturation and aging. In this study, we have used a recent state-of-the-art cerebellum segmentation method called CERES and a large data set (N = 2,831 images) from healthy controls covering the entire lifespan to provide a model for 12 cerebellum structures (i.e., lobules I-II, III, IV, VI, Crus I, Crus II, VIIB, VIIIA, VIIIB, IX, and X). We found that lobules have generally an evolution that follows a trajectory composed by a fast growth and a slow degeneration having sometimes a plateau for absolute volumes, and a decreasing tendency (faster in early ages) for normalized volumes. Special consideration is dedicated to Crus II, where slow degeneration appears to stabilize in elder ages for absolute volumes, and to lobule X, which does not present any fast growth during childhood in absolute volumes and shows a slow growth for normalized volumes.


Asunto(s)
Cerebelo , Sustancia Gris , Desarrollo Humano/fisiología , Imagen por Resonancia Magnética/métodos , Sustancia Blanca , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cerebelo/anatomía & histología , Cerebelo/diagnóstico por imagen , Cerebelo/crecimiento & desarrollo , Niño , Preescolar , Femenino , Sustancia Gris/anatomía & histología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/crecimiento & desarrollo , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Masculino , Persona de Mediana Edad , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Adulto Joven
7.
Hum Brain Mapp ; 42(18): 5911-5926, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34547147

RESUMEN

Quadrantanopia caused by inadvertent severing of Meyer's Loop of the optic radiation is a well-recognised complication of temporal lobectomy for conditions such as epilepsy. Dissection studies indicate that the anterior extent of Meyer's Loop varies considerably between individuals. Quantifying this for individual patients is thus an important step to improve the safety profile of temporal lobectomies. Previous attempts to delineate Meyer's Loop using diffusion MRI tractography have had difficulty estimating its full anterior extent, required manual ROI placement, and/or relied on advanced diffusion sequences that cannot be acquired routinely in most clinics. Here we present CONSULT: a pipeline that can delineate the optic radiation from raw DICOM data in a completely automated way via a combination of robust pre-processing, segmentation, and alignment stages, plus simple improvements that bolster the efficiency and reliability of standard tractography. We tested CONSULT on 696 scans of predominantly healthy participants (539 unique brains), including both advanced acquisitions and simpler acquisitions that could be acquired in clinically acceptable timeframes. Delineations completed without error in 99.4% of the scans. The distance between Meyer's Loop and the temporal pole closely matched both averages and ranges reported in dissection studies for all tested sequences. Median scan-rescan error of this distance was 1 mm. When tested on two participants with considerable pathology, delineations were successful and realistic. Through this, we demonstrate not only how to identify Meyer's Loop with clinically feasible sequences, but also that this can be achieved without fundamental changes to tractography algorithms or complex post-processing methods.


Asunto(s)
Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Vías Visuales/anatomía & histología , Vías Visuales/diagnóstico por imagen , Adulto , Lobectomía Temporal Anterior/métodos , Femenino , Humanos , Masculino , Cuidados Preoperatorios/métodos , Adulto Joven
8.
Neuroimage ; 219: 117026, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32522665

RESUMEN

Whole brain segmentation of fine-grained structures using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a single convolution neural network (CNN) or few independent CNNs. In this paper, we present a novel ensemble method based on a large number of CNNs processing different overlapping brain areas. Inspired by parliamentary decision-making systems, we propose a framework called AssemblyNet, made of two "assemblies" of U-Nets. Such a parliamentary system is capable of dealing with complex decisions, unseen problem and reaching a relevant consensus. AssemblyNet introduces sharing of knowledge among neighboring U-Nets, an "amendment" procedure made by the second assembly at higher-resolution to refine the decision taken by the first one, and a final decision obtained by majority voting. During our validation, AssemblyNet showed competitive performance compared to state-of-the-art methods such as U-Net, Joint label fusion and SLANT. Moreover, we investigated the scan-rescan consistency and the robustness to disease effects of our method. These experiences demonstrated the reliability of AssemblyNet. Finally, we showed the interest of using semi-supervised learning to improve the performance of our method.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Aprendizaje Profundo , Humanos , Programas Informáticos
9.
Hum Brain Mapp ; 40(12): 3431-3451, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31034738

RESUMEN

Medial temporal lobe (MTL) substructures are the earliest regions affected by neurofibrillary tangle pathology-and thus are promising biomarkers for Alzheimer's disease (AD). However, automatic segmentation of the MTL using only T1-weighted (T1w) magnetic resonance imaging (MRI) is challenging due to the large anatomical variability of the MTL cortex and the confound of the dura mater, which is commonly segmented as gray matter by state-of-the-art algorithms because they have similar intensity in T1w MRI. To address these challenges, we developed a novel atlas set, consisting of 15 cognitively normal older adults and 14 patients with mild cognitive impairment with a label explicitly assigned to the dura, that can be used by the multiatlas automated pipeline (Automatic Segmentation of Hippocampal Subfields [ASHS-T1]) for the segmentation of MTL subregions, including anterior/posterior hippocampus, entorhinal cortex (ERC), Brodmann areas (BA) 35 and 36, and parahippocampal cortex on T1w MRI. Cross-validation experiments indicated good segmentation accuracy of ASHS-T1 and that the dura can be reliably separated from the cortex (6.5% mislabeled as gray matter). Conversely, FreeSurfer segmented majority of the dura mater (62.4%) as gray matter and the degree of dura mislabeling decreased with increasing disease severity. To evaluate its clinical utility, we applied the pipeline to T1w images of 663 ADNI subjects and significant volume/thickness loss is observed in BA35, ERC, and posterior hippocampus in early prodromal AD and all subregions at later stages. As such, the publicly available new atlas and ASHS-T1 could have important utility in the early diagnosis and monitoring of AD and enhancing brain-behavior studies of these regions.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Lóbulo Temporal/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Lóbulo Temporal/fisiopatología
10.
Neuroimage ; 183: 150-172, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30099076

RESUMEN

The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Ataxia Cerebelosa/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Niño , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Neuroimagen/normas
11.
Hum Brain Mapp ; 39(4): 1814-1824, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29331060

RESUMEN

BACKGROUND: Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. METHOD: We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3 T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. RESULTS: At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p < .01). After one year, CA4/dentate gyrus atrophy worsened (-6.4%, p < .0001) and significant CA1 atrophy appeared (both in the stratum-pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p < .001 and -6.2%, p < .01, respectively). CA4/dentate gyrus volume at baseline predicted CA1 volume one year after CIS (R2 = 0.44 to 0.47, p < .001, with age, T2 lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (ß = 0.87, p < .05). CONCLUSION: The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance.


Asunto(s)
Hipocampo/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Atrofia , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Hipocampo/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Esclerosis Múltiple/patología , Esclerosis Múltiple/psicología , Tamaño de los Órganos , Reconocimiento de Normas Patrones Automatizadas , Estudios Prospectivos
12.
Neuroimage ; 163: 286-295, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28958881

RESUMEN

The importance of the hippocampus in the study of several neurodegenerative diseases such as Alzheimer's disease makes it a structure of great interest in neuroimaging. However, few segmentation methods have been proposed to measure its subfields due to its complex structure and the lack of high resolution magnetic resonance (MR) data. In this work, we present a new pipeline for automatic hippocampus subfield segmentation using two available hippocampus subfield delineation protocols that can work with both high and standard resolution data. The proposed method is based on multi-atlas label fusion technology that benefits from a novel multi-contrast patch match search process (using high resolution T1-weighted and T2-weighted images). The proposed method also includes as post-processing a new neural network-based error correction step to minimize systematic segmentation errors. The method has been evaluated on both high and standard resolution images and compared to other state-of-the-art methods showing better results in terms of accuracy and execution time.


Asunto(s)
Hipocampo/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Algoritmos , Femenino , Humanos , Masculino , Reconocimiento de Normas Patrones Automatizadas/métodos
13.
Neuroimage ; 147: 916-924, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27833012

RESUMEN

The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-of-the-art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes).


Asunto(s)
Atlas como Asunto , Cerebelo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Adulto , Cerebelo/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología
14.
Neuroimage ; 144(Pt A): 183-202, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27702610

RESUMEN

RATIONAL: The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants METHODS: A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). RESULTS: The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms, was found in left BA35 using both regional and summary thickness measures. Further, statistical maps of regional thickness difference between aMCI and controls revealed different patterns for the three anatomical variants.


Asunto(s)
Disfunción Cognitiva/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Corteza Perirrinal/anatomía & histología , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Perirrinal/diagnóstico por imagen , Corteza Perirrinal/patología
15.
Mult Scler ; 23(9): 1214-1224, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27780913

RESUMEN

OBJECTIVE: We investigated whether diffusion tensor imaging (DTI) could reveal early hippocampal damage and clinically relevant correlates of memory impairment in persons with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS). METHODS: A total of 37 persons with CIS, 32 with MS and 36 controls prospectively included from 2011 to 2014 were tested for cognitive performances and scanned with 3T-magnetic resonance imaging (MRI) to assess volumetric and DTI changes within the hippocampus, whole brain volume and T2-lesion load. RESULTS: While there was no hippocampal atrophy in the CIS group, hippocampal fractional anisotropy (FA) was significantly decreased compared to controls. Decrease in hippocampal FA together with increased mean diffusivity (MD) was even more prominent in MS patients. In CIS, hippocampal MD was correlated with episodic verbal memory performance ( r = -0.57, p = 0.0002 and odds ratio (OR) = 0.058, 95% confidence interval (CI) = 0.0057-0.59, p = 0.016 adjusted for age, gender, depression and T2-lesion load), but not with cognitive tasks unrelated to hippocampal functions. Hippocampal MD was the only variable discriminating memory-impaired from memory-preserved persons with CIS (area under the curve (AUC) = 0.77, sensitivity = 90.0%, specificity = 70.3%, positive predictive value (PPV) = 52.9%, negative predictive value (NPV) = 95.0%). CONCLUSION: DTI alterations within the hippocampus might reflect early neurodegenerative processes that are correlated with episodic memory performance, discriminating persons with CIS according to their memory status.


Asunto(s)
Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Hipocampo/patología , Trastornos de la Memoria/fisiopatología , Memoria Episódica , Adulto , Enfermedades Desmielinizantes/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Adulto Joven
16.
Neuroimage ; 124(Pt A): 770-782, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26244277

RESUMEN

Automatic segmentation methods are important tools for quantitative analysis of Magnetic Resonance Images (MRI). Recently, patch-based label fusion approaches have demonstrated state-of-the-art segmentation accuracy. In this paper, we introduce a new patch-based label fusion framework to perform segmentation of anatomical structures. The proposed approach uses an Optimized PAtchMatch Label fusion (OPAL) strategy that drastically reduces the computation time required for the search of similar patches. The reduced computation time of OPAL opens the way for new strategies and facilitates processing on large databases. In this paper, we investigate new perspectives offered by OPAL, by introducing a new multi-scale and multi-feature framework. During our validation on hippocampus segmentation we use two datasets: young adults in the ICBM cohort and elderly adults in the EADC-ADNI dataset. For both, OPAL is compared to state-of-the-art methods. Results show that OPAL obtained the highest median Dice coefficient (89.9% for ICBM and 90.1% for EADC-ADNI). Moreover, in both cases, OPAL produced a segmentation accuracy similar to inter-expert variability. On the EADC-ADNI dataset, we compare the hippocampal volumes obtained by manual and automatic segmentation. The volumes appear to be highly correlated that enables to perform more accurate separation of pathological populations.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Anciano , Algoritmos , Bases de Datos Factuales , Hipocampo/anatomía & histología , Humanos , Neuroimagen/métodos , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Adulto Joven
17.
Hum Brain Mapp ; 36(12): 4758-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26454259

RESUMEN

Finding very early biomarkers of Alzheimer's Disease (AD) to aid in individual prognosis is of major interest to accelerate the development of new therapies. Among the potential biomarkers, neurodegeneration measurements from MRI are considered as good candidates but have so far not been effective at the early stages of the pathology. Our objective is to investigate the efficiency of a new MR-based hippocampal grading score to detect incident dementia in cognitively intact patients. This new score is based on a pattern recognition strategy, providing a grading measure that reflects the similarity of the anatomical patterns of the subject under study with dataset composed of healthy subjects and patients with AD. Hippocampal grading was evaluated on subjects from the Three-City cohort, with a followup period of 12 years. Experiments demonstrate that hippocampal grading yields prediction accuracy up to 72.5% (P < 0.0001) 7 years before conversion to AD, better than both hippocampal volume (58.1%, P = 0.04) and MMSE score (56.9%, P = 0.08). The area under the ROC curve (AUC) supports the efficiency of imaging biomarkers with a gain of 8.4 percentage points for hippocampal grade (73.0%) over hippocampal volume (64.6%). Adaptation of the proposed framework to clinical score estimation is also presented. Compared with previous studies investigating new biomarkers for AD prediction over much shorter periods, the very long followup of the Three-City cohort demonstrates the important clinical potential of the proposed imaging biomarker. The high accuracy obtained with this new imaging biomarker paves the way for computer-based prognostic aides to help the clinician identify cognitively intact subjects that are at high risk to develop AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Demencia/patología , Hipocampo/patología , Imagen por Resonancia Magnética/métodos , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Estudios de Cohortes , Bases de Datos Factuales/estadística & datos numéricos , Progresión de la Enfermedad , Procesamiento Automatizado de Datos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Escalas de Valoración Psiquiátrica , Curva ROC , Reproducibilidad de los Resultados
18.
Brain Commun ; 6(2): fcae055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444913

RESUMEN

Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy-Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy-Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy-Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy-Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy-Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.

19.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38635941

RESUMEN

BACKGROUND AND OBJECTIVES: Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS). Some data point toward thalamic nuclei that could be affected more than others. However, the dynamic of their changes during MS evolution and the mechanisms driving their differential alterations are still uncertain. METHODS: We paired a large cohort of 1,123 patients with MS with the same number of healthy controls, all scanned with conventional 3D-T1 MRI. To highlight the main atrophic regions at the thalamic nuclei level, we validated a segmentation strategy consisting of deep learning-based synthesis of sequences, which were used for automatic multiatlas segmentation. Then, through a lifespan-based approach, we could model the dynamics of the 4 main thalamic nuclei groups. RESULTS: All analyses converged toward a higher rate of atrophy for the posterior and medial groups compared with the anterior and lateral groups. We also demonstrated that focal MS white matter lesions were associated with atrophy of groups of nuclei when specifically located within the associated thalamocortical projections. The volumes of the most affected posterior group, but also of the anterior group, were better associated with clinical disability than the volume of the whole thalamus. DISCUSSION: These findings point toward the thalamic nuclei adjacent to the third ventricle as more susceptible to neurodegeneration during the entire course of MS through potentiation of disconnection effects by regional factors. Because this information can be obtained even from standard T1-weighted MRI, this paves the way toward such an approach for future monitoring of patients with MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Núcleos Talámicos/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Tálamo/patología , Imagen por Resonancia Magnética , Atrofia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA