Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioorg Med Chem Lett ; 25(23): 5477-80, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26525861

RESUMEN

Antibiotic-resistant superbugs such as vancomycin-resistant Enterococci (VRE) and Staphylococci have become a major global health hazard. To address this issue, we synthesized vancomycin aglycon dimers to systematically probe the impact of a linker on biological activity. A dimer having a pendant lipophilic moiety in the linker showed ∼300-fold more activity than vancomycin against VRE. The high activity of the compound is attributed to its enhanced binding affinity to target peptides which resulted in improved peptidoglycan (cell wall) biosynthesis inhibition. Therefore, our studies suggest that these compounds, prepared by using facile synthetic methodology, can be used to combat vancomycin-resistant bacterial infections.


Asunto(s)
Antibacterianos/química , Bacterias/efectos de los fármacos , Doxorrubicina/análogos & derivados , Farmacorresistencia Bacteriana/efectos de los fármacos , Vancomicina/química , Antibacterianos/farmacología , Dimerización , Doxorrubicina/química , Lípidos/química , Pruebas de Sensibilidad Microbiana , Solubilidad
2.
Chem Commun (Camb) ; 52(69): 10582, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27502077

RESUMEN

Correction for 'Selective and broad spectrum amphiphilic small molecules to combat bacterial resistance and eradicate biofilms' by Jiaul Hoque et al., Chem. Commun., 2015, 51, 13670-13673.

3.
ACS Infect Dis ; 2(2): 111-22, 2016 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-27624962

RESUMEN

Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-ß-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Quemaduras/microbiología , Lisina/análogos & derivados , Lisina/farmacología , Infección de Heridas/microbiología , Animales , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/metabolismo
4.
ACS Infect Dis ; 2(2): 132-9, 2016 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-27624964

RESUMEN

The emergence of drug resistance along with a declining pipeline of clinically useful antibiotics has made it vital to develop more effective antimicrobial therapeutics, particularly against difficult-to-treat Gram-negative pathogens (GNPs). Many antibacterial agents, including glycopeptide antibiotics such as vancomycin, are inherently inactive toward GNPs because of their inability to cross the outer membrane of these pathogens. Here, we demonstrate, for the first time, lipophilic cationic (permanent positive charge) vancomycin analogues were able to permeabilize the outer membrane of GNPs and overcome the inherent resistance of GNPs toward glycopeptides. Unlike vancomycin, these analogues were shown to have a high activity against a variety of multidrug-resistant clinical isolates such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. In the murine model of carbapenem-resistant A. baumannii infection, the optimized compound showed potent activity with no observed toxicity. The notable activity of these compounds is attributed to the incorporation of new membrane disruption mechanisms (cytoplasmic membrane depolarization along with outer and inner (cytoplasmic) membrane permeabilization) into vancomycin. Therefore, our results indicate the potential of the present vancomycin analogues to be used against drug-resistant GNPs, thus strengthening the antibiotic arsenal for combating Gram-negative bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Vancomicina/farmacología , Acinetobacter baumannii/efectos de los fármacos , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/microbiología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Relación Estructura-Actividad , Vancomicina/análogos & derivados
5.
J Antibiot (Tokyo) ; 68(5): 302-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25351946

RESUMEN

Vancomycin, a glycopeptide antibiotic, has long been a drug of choice for life-threatening Gram-positive bacterial infections. Vancomycin confers its antibacterial activity by inhibiting bacterial cell wall biosynthesis. However, over the time, vancomycin has also been rendered ineffective by vancomycin-resistant bacteria (VRB). These bacteria developed resistance to it by alteration of cell wall precursor from D-Ala-D-Ala to D-Ala-D-Lac (vancomycin-resistant Enterococci, VRE), which leads to manifold reduction in the binding constant and results in the loss of antibacterial activity. Herein, we report various vancomycin-sugar analogs, based on a simple design rationale, which exhibit increased binding affinity to VRB, thereby resensitizing VRB to vancomycin. Optimized vancomycin-sugar conjugate exhibited 150-fold increase in affinity for N,N'-diacetyl-Lys-D-Ala-D-Lac compared with vancomycin. This improved binding affinity was also reflected in its antibacterial activity, wherein the MIC value was brought down from 750 to 36 µM against VRE (VanA phenotype). To further sensitize against VRE, we appended lipophilic alkyl chain to optimized vancomycin-sugar conjugate. This lipophilic-vancomycin-sugar conjugate was >1000-fold (MIC=0.7 µM) and 250-fold (MIC=1 µM) more effective against VanA and VanB strains of VRE, respectively, compared with vancomycin. Therefore, this synthetically simple approach could lead to the development of new generation of glycopeptide antibiotics, which can be clinically used to tackle VRB infections.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Enterococcus/efectos de los fármacos , Resistencia a la Vancomicina , Vancomicina/farmacología , Conformación de Carbohidratos , Carbohidratos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptidos/química , Unión Proteica
6.
J Med Chem ; 58(14): 5486-500, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26102297

RESUMEN

Treating bacterial biofilms with conventional antibiotics is limited due to ineffectiveness of the drugs and higher propensity to develop bacterial resistance. Development of new classes of antibacterial therapeutics with alternative mechanisms of action has become imperative. Herein, we report the design, synthesis, and biological evaluations of novel membrane-active small molecules featuring two positive charges, four nonpeptidic amide groups, and variable hydrophobic/hydrophilic (amphiphilic) character. The biocides synthesized via a facile methodology not only displayed good antibacterial activity against wild-type bacteria but also showed high activity against various drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and ß-lactam-resistant Klebsiella pneumoniae. Further, these biocides not only inhibited the formation of biofilms but also disrupted the established S. aureus and E. coli biofilms. The membrane-active biocides hindered the propensity to develop bacterial resistance. Moreover, the biocides showed negligible toxicity against mammalian cells and thus bear potential to be used as therapeutic agents.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Antibacterianos/toxicidad , Bacterias/citología , Bacterias/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Cinética , Potenciales de la Membrana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Permeabilidad/efectos de los fármacos , Potasio/metabolismo , Bibliotecas de Moléculas Pequeñas/toxicidad , Relación Estructura-Actividad
7.
Chem Commun (Camb) ; 51(71): 13670-3, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26226319

RESUMEN

Rationally designed amphiphilic small molecules selectively kill drug-sensitive and drug-resistant bacteria over mammalian cells. The small molecules disperse preformed biofilms and reduce viable bacterial count in the biofilms. Moreover, this class of membrane-active molecules disarms the development of bacterial resistance.


Asunto(s)
Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
8.
ACS Appl Mater Interfaces ; 7(3): 1804-15, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25541751

RESUMEN

Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Membrana Celular/efectos de los fármacos , Pintura/análisis , Polímeros/síntesis química , Polímeros/farmacología , Antibacterianos/química , Antifúngicos/química , Bacterias/efectos de los fármacos , Infección Hospitalaria/microbiología , Humanos , Pintura/microbiología , Polímeros/química
9.
PLoS One ; 10(12): e0144094, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26669634

RESUMEN

Development of synthetic strategies to combat Staphylococcal infections, especially those caused by methicillin resistant Staphyloccus aureus (MRSA), needs immediate attention. In this manuscript we report the ability of aryl-alkyl-lysines, simple membrane active small molecules, to treat infections caused by planktonic cells, persister cells and biofilms of MRSA. A representative compound, NCK-10, did not induce development of resistance in planktonic cells in multiple passages and retained activity in varying environments of pH and salinity. At low concentrations the compound was able to depolarize and permeabilize the membranes of S. aureus persister cells rapidly. Treatment with the compound not only eradicated pre-formed MRSA biofilms, but also brought down viable counts in bacterial biofilms. In a murine model of MRSA skin infection, the compound was more effective than fusidic acid in bringing down the bacterial burden. Overall, this class of molecules bears potential as antibacterial agents against skin-infections.


Asunto(s)
Biopelículas/efectos de los fármacos , Lisina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Plancton/citología , Enfermedades Cutáneas Infecciosas/prevención & control , Alquilación , Animales , Antibacterianos/farmacología , Dermis/efectos de los fármacos , Dermis/patología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/efectos de los fármacos , Cinética , Lisina/química , Lisina/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Plancton/efectos de los fármacos , Enfermedades Cutáneas Infecciosas/microbiología
10.
PLoS One ; 10(4): e0126757, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25879927

RESUMEN

Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs)that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates.Organismic studies showed that bacteria had an increased and faster uptake of tetracyclinein the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover,bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.


Asunto(s)
Membrana Celular/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Klebsiella/tratamiento farmacológico , Tetraciclina/administración & dosificación , beta-Lactamasas/metabolismo , Animales , Antibacterianos/administración & dosificación , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Ratones
11.
PLoS One ; 10(3): e0119422, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789871

RESUMEN

Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.


Asunto(s)
Sinergismo Farmacológico , Infecciones por Klebsiella/tratamiento farmacológico , Maleimidas/administración & dosificación , Tetraciclina/administración & dosificación , Animales , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Maleimidas/química , Potenciales de la Membrana/efectos de los fármacos , Ratones , beta-Lactamasas/metabolismo
12.
Int J Antimicrob Agents ; 45(6): 627-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25900818

RESUMEN

The membrane-active glycopeptide antibiotic YV11455 is a lipophilic cationic vancomycin analogue that demonstrates rapid and concentration-dependent killing of clinically relevant multidrug-resistant (MDR) Gram-positive bacteria in vitro. YV11455 was 2-fold and 54-270-fold more effective than vancomycin against clinical isolates of vancomycin-sensitive and vancomycin-resistant bacteria, respectively. In this study, the in vivo efficacy, pharmacodynamics, pharmacokinetics and acute toxicology of YV11455 were investigated. In vivo activity and pharmacodynamics were determined in the neutropenic mouse thigh infection model against meticillin-resistant Staphylococcus aureus (MRSA). YV11455 produced dose-dependent reductions in MRSA titres in thigh muscle. When administered intravenously, the 50% effective dose (ED(50)) for YV11455 against MRSA was found to be 3.3 mg/kg body weight, and titres were reduced by up to ca. 3log(10)CFU/g from pre-treatment values at a dosage of 12 mg/kg with single treatment. Single-dose pharmacokinetic studies demonstrated linear kinetics and a prolonged half-life, with an increase in drug exposure (area under the concentration-time curve) compared with vancomycin. The peak plasma concentration following an intravenous dose of 12 mg/kg was 543.5 µg/mL. Acute toxicology studies revealed that YV11455 did not cause any significant alterations in biochemical parameters or histological pictures related to major organs such as the liver and kidney at its pharmacodynamic endpoint (ED(3-log kill)). These findings collectively suggest that YV11455 could be used clinically for the treatment of infections caused by MDR Gram-positive bacteria.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/farmacocinética , Glicopéptidos/farmacología , Glicopéptidos/farmacocinética , Infecciones Estafilocócicas/tratamiento farmacológico , Vancomicina/farmacología , Vancomicina/farmacocinética , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Carga Bacteriana , Modelos Animales de Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Glicopéptidos/administración & dosificación , Glicopéptidos/efectos adversos , Pruebas de Función Renal , Pruebas de Función Hepática , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Músculos/microbiología , Infecciones Estafilocócicas/microbiología , Vancomicina/administración & dosificación , Vancomicina/efectos adversos
13.
J Med Chem ; 57(11): 4558-68, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24846441

RESUMEN

The alarming growth of antibiotic resistant superbugs such as vancomycin-resistant Enterococci and Staphylococci has become a major global health hazard. To address this issue, we report the development of lipophilic cationic vancomycin analogues possessing excellent antibacterial activity against several drug-resistant strains. Compared to vancomycin, efficacy greater than 1000-fold was demonstrated against vancomycin-resistant Enterococci (VRE). Significantly, unlike vancomycin, these compounds were shown to be bactericidal at low concentrations and did not induce bacterial resistance. An optimized compound in the series, compared to vancomycin, showed higher activity in methicillin-resistant Staphylococcus aureus (MRSA) infected mouse model and exhibited superior antibacterial activity in whole blood with no observed toxicity. The remarkable activity of these compounds is attributed to the incorporation of a new membrane disruption mechanism into vancomycin and opens up a great opportunity for the development of novel antibiotics.


Asunto(s)
Farmacorresistencia Bacteriana , Compuestos de Amonio Cuaternario/síntesis química , Vancomicina/análogos & derivados , Vancomicina/síntesis química , Animales , Bacteriemia/tratamiento farmacológico , Permeabilidad de la Membrana Celular , Enterococcus/efectos de los fármacos , Enterococcus/metabolismo , Femenino , Células HeLa , Hemólisis , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Neutropenia/complicaciones , Compuestos de Amonio Cuaternario/farmacología , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus/efectos de los fármacos , Staphylococcus/metabolismo , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/farmacología , Vancomicina/farmacología
14.
J Med Chem ; 57(4): 1428-36, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24479371

RESUMEN

The emergence of multidrug resistant bacteria compounded by the depleting arsenal of antibiotics has accelerated efforts toward development of antibiotics with novel mechanisms of action. In this report, we present a series of small molecular antibacterial peptoid mimics which exhibit high in vitro potency against a variety of Gram-positive and Gram-negative bacteria, including drug-resistant species such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. The highlight of these compounds is their superior activity against the major nosocomial pathogen Pseudomonas aeruginosa. Nontoxic toward mammalian cells, these rapidly bactericidal compounds primarily act by permeabilization and depolarization of bacterial membrane. Synthetically simple and selectively antibacterial, these compounds can be developed into a newer class of therapeutic agents against multidrug resistant bacterial species.


Asunto(s)
Antibacterianos/farmacología , Imitación Molecular , Peptoides/farmacología , Antibacterianos/química , Cromatografía Líquida de Alta Presión , Farmacorresistencia Microbiana , Enterococcus faecium/efectos de los fármacos , Hemólisis/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Peptoides/química , Espectrofotometría Ultravioleta
15.
Chem Commun (Camb) ; 49(82): 9389-91, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23868724

RESUMEN

Quaternized polymers mimicking the antimicrobial peptides were created by tuning the side-chain amphiphilicity using a first-time approach of post-functionalization. They displayed excellent efficacy against pathogenic bacteria even in human plasma and membrane disruptive mode of action. The optimized polymers and degraded products were non-hemolytic.


Asunto(s)
Antibacterianos , Tensoactivos , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Hemólisis , Hemolíticos/síntesis química , Hemolíticos/química , Hemolíticos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Plasma/efectos de los fármacos , Plasma/microbiología , Tensoactivos/síntesis química , Tensoactivos/química , Tensoactivos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA