Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 574(7778): 343-352, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31619791

RESUMEN

A hidden carbon cycle exists inside Earth. Every year, megatons of carbon disappear into subduction zones, affecting atmospheric carbon dioxide and oxygen over Earth's history. Here we discuss the processes that move carbon towards subduction zones and transform it into fluids, magmas, volcanic gases and diamonds. The carbon dioxide emitted from arc volcanoes is largely recycled from subducted microfossils, organic remains and carbonate precipitates. The type of carbon input and the efficiency with which carbon is remobilized in the subduction zone vary greatly around the globe, with every convergent margin providing a natural laboratory for tracing subducting carbon.


Asunto(s)
Ciclo del Carbono , Planeta Tierra , Carbono/química , Fenómenos Geológicos , Erupciones Volcánicas
2.
Nature ; 569(7757): 542-545, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118522

RESUMEN

Amorphous water ice comes in at least three distinct structural forms, all lacking long-range crystalline order. High-density amorphous ice (HDA) was first produced by compressing ice I to 11 kilobar at temperatures below 130 kelvin, and the process was described as thermodynamic melting1, implying that HDA is a glassy state of water. This concept, and the ability to transform HDA reversibly into low-density amorphous ice, inspired the two-liquid water model, which relates the amorphous phases to two liquid waters in the deeply supercooled regime (below 228 kelvin) to explain many of the anomalies of water2 (such as density and heat capacity anomalies). However, HDA formation has also been ascribed3 to a mechanical instability causing structural collapse and associated with kinetics too sluggish for recrystallization to occur. This interpretation is supported by simulations3, analogy with a structurally similar system4, and the observation of lattice-vibration softening as ice is compressed5,6. It also agrees with recent observations of ice compression at higher temperatures-in the 'no man's land' regime, between 145 and 200 kelvin, where kinetics are faster-resulting in crystalline phases7,8. Here we further probe the role of kinetics and show that, if carried out slowly, compression of ice I even at 100 kelvin (a region in which HDA typically forms) gives proton-ordered, but non-interpenetrating, ice IX', then proton-ordered and interpenetrating ice XV', and finally ice VIII'. By contrast, fast compression yields HDA but no ice IX, and direct transformation of ice I to ice XV' is structurally inhibited. These observations suggest that HDA formation is a consequence of a kinetically arrested transformation between low-density ice I and high-density ice XV' and challenge theories that connect amorphous ice to supercooled liquid water.

3.
Nature ; 589(7840): E1, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33303960
4.
Nature ; 539(7629): 420-424, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27853207

RESUMEN

The chemistry of aqueous fluids controls the transport and exchange-the cycles-of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth's interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth's atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.

5.
Proc Natl Acad Sci U S A ; 112(30): E3997-4006, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26048906

RESUMEN

Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

6.
Nature ; 456(7221): 493-6, 2008 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19037314

RESUMEN

The first approximately 600 million years of Earth history (the 'Hadean' eon) remain poorly understood, largely because there is no rock record dating from that era. Detrital Hadean igneous zircons from the Jack Hills, Western Australia, however, can potentially provide insights into the conditions extant on our planet at that time. Results of geochemical investigations using these ancient grains have been interpreted to suggest the presence of a hydrosphere and continental crust before 4 Gyr. An underexploited characteristic of the >4 Gyr zircons is their diverse assemblage of mineral inclusions. Here we present an examination of over 400 Hadean zircons from Jack Hills, which shows that some inclusion assemblages are conducive to thermobarometry. Our thermobarometric analyses of 4.02-4.19-Gyr-old inclusion-bearing zircons constrain their magmatic formation conditions to about 700 degrees C and 7 kbar. This result implies a near-surface heat flow of approximately 75 mW m(-2), about three to five times lower than estimates of Hadean global heat flow. As the only site of magmatism on modern Earth that is characterized by heat flow of about one-quarter of the global average is above subduction zones, we suggest that the magmas from which the Jack Hills Hadean zircons crystallized were formed largely in an underthrust environment, perhaps similar to modern convergent margins.

8.
J Geophys Res Solid Earth ; 126(8): e2021JB021976, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34595085

RESUMEN

Processes for formation, cooling, and altering Earth's ocean crust are not yet completely understood due to challenges in access and sampling. Here, we use contiguous micro-imaging infrared spectroscopy to develop complete-core maps of mineral occurrence and investigate spatial patterns in the hydrothermal alteration of 1.2 km of oceanic crust recovered from Oman Drilling Project Holes GT1A, GT2A, and GT3A drilled in the Samail Ophiolite, Oman. The imaging spectrometer shortwave infrared sensor measured reflectance of light at wavelengths 1.0-2.6 µm at 250-260 µm/pixel, resulting in >1 billion independent measurements. We map distributions of nine key primary and secondary minerals/mineral groups-clinopyroxene, amphibole, calcite, chlorite, epidote, gypsum, kaolinite/montmorillonite, prehnite, and zeolite-and find differences in their spatial occurrences and pervasiveness. Accuracy of spectral mapping of occurrence is 68%-100%, established using X-ray diffraction measurements from the core description. The sheeted dikes and gabbros of upper oceanic crust Hole GT3A show more pervasive alteration and alteration dominated by chlorite, amphibole, and epidote. The foliated/layered gabbros of GT2A from intermediate crustal depths have similarly widespread chlorite but more zeolite and little amphibole and epidote. The layered gabbros of the lower oceanic crust (GT1A) have remnant pyroxene and 2X less chlorite, but alteration is extensive within and surrounding major fault zones with widespread occurrences of amphibole. The results indicate greater distribution of higher temperature alteration minerals in the upper oceanic crust relative to deeper gabbros and highlight the importance of fault zones in hydrothermal convection in the lower ocean crust.

9.
Nat Commun ; 10(1): 789, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770828

RESUMEN

Current estimates of the carbon flux between the surface and mantle are highly variable, and the total amount of carbon stored in closed hidden reservoirs is unknown. Understanding the forms in which carbon existed in the molten early Earth is a critical step towards quantifying the carbon budget of Earth's deep interior. Here we employ first-principles molecular dynamics to study the evolution of carbon species as a function of pressure in a pyrolite melt. We find that with increasing pressure, the abundance of CO2 and CO3 species decreases at the expense of CO4 and complex oxo-carbon polymers (CxOy) displaying multiple C-C bonds. We anticipate that polymerized oxo-carbon species were a significant reservoir for carbon in the terrestrial magma ocean. The presence of Fe-C clusters suggests that upon segregation, Fe-rich metal may partition a significant fraction of carbon from the silicate liquid, leading to carbon transport into the Earth's core.

10.
Nat Commun ; 5: 5091, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25311627

RESUMEN

Knowledge of the occurrence and mobility of carbonate-rich melts in the Earth's mantle is important for understanding the deep carbon cycle and related geochemical and geophysical processes. However, our understanding of the mobility of carbonate-rich melts remains poor. Here we report viscosities of carbonate melts up to 6.2 GPa using a newly developed technique of ultrafast synchrotron X-ray imaging. These carbonate melts display ultralow viscosities, much lower than previously thought, in the range of 0.006-0.010 Pa s, which are ~2 to 3 orders of magnitude lower than those of basaltic melts in the upper mantle. As a result, the mobility of carbonate melts (defined as the ratio of melt-solid density contrast to melt viscosity) is ~2 to 3 orders of magnitude higher than that of basaltic melts. Such high mobility has significant influence on several magmatic processes, such as fast melt migration and effective melt extraction beneath mid-ocean ridges.

11.
Science ; 331(6020): 1018-9, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21350156
12.
Proc Natl Acad Sci U S A ; 99(14): 9113-6, 2002 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-12082177

RESUMEN

Fifty years ago a classic paper by W. W. Rubey [(1951) Geol. Soc. Am. Bull. 62, 1111-1148] examined various hypotheses regarding the origin of sea water and concluded that the most likely hypothesis was volcanic outgassing, a view that was generally accepted by earth scientists for the next several decades. More recent work suggests that the rate of subduction of water is much larger than the volcanic outgassing rate, lending support to hypotheses that either ocean volume has decreased with time, or that the imbalance is offset by continuous replenishment of water by cometary impacts. These alternatives are required in the absence of additional mechanisms for the return of water from subducting lithosphere to the Earth's surface. Our recent work on crustal permeability suggests a large capacity for water upflow through tectonically active continental crust, resulting in a heretofore unrecognized degassing pathway that can accommodate the water subduction rate. Escape of recycled water via delivery from the mantle through zones of active metamorphism eliminates the mass-balance argument for the loss of ocean volume or extraterrestrial sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA