Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; : 109992, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972445

RESUMEN

Previous studies have shown that pharmaceutical agents such as lipoic acid have the ability to soften the lens, presenting a promising avenue for treating presbyopia. One obstacle encountered in the preclinical stage of such agents is the need for precise measurements of lens elasticity in experimental models. This study aimed to evaluate the effects of 25-hydroxycholesterol, lipoic acid, and obeticholic acid on the viscoelastic properties of mouse lenses using a custom-built elastometer system. Data were acquired on lenses from C57BL/6J female mice from two age groups: young (age: 8-10 weeks) and old (age: 32-43 weeks). OD lenses were used as the control and OS lenses were treated. Control lenses were immersed in Dulbecco's Modified Eagle Medium (DMEM) and treatment lenses were immersed in a compound solution containing 25-hydroxycholesterol (5 young and 5 old), lipoic acid at 2.35 mM (5 young and 5 old), lipoic acid at 0.66 mM (5 old), or obeticholic acid (5 old) at 37ºC for 18 hours. After treatment, the mouse lenses were placed in a DMEM-filled chamber within a custom-built elastometer system that recorded the load and lens shape as the lens was compressed by 600 µm at a speed of 50 µm/s. The load was continuously recorded during compression and during stress-relaxation. The compression phase was fit with a linear function to quantify lens stiffness. The stress-relaxation phase was fit with a 3-term exponential relaxation model providing relaxation time constants (t1, t2, t3), and equilibrium load. The lens stiffness, time constants and equilibrium load were compared for the control and treated groups. Results revealed an increase in stiffness with age for the control group (young: 1.16 ± 0.11 g/mm, old: 1.29 ± 0.14 g/mm) and relaxation time constants decreased with age (young: t1 = 221.9 ± 29.0 s, t2 = 24.7 ± 3.8 s, t3 = 3.12 ± 0.87 s, old: t1 = 183.0 ± 22.0 s, t2 = 20.6 ± 2.6 s and t3 = 2.24 ± 0.43 s). Among the compounds tested, only 25-hydroxycholesterol produced statistically significant changes in the lens stiffness, relaxation time constants, and equilibrium load. In conclusion, older mouse lenses are stiffer and less viscous than young mouse lenses. Notably, no significant change in lens stiffness was observed following treatment with lipoic acid, contrary to previous findings.

2.
Exp Eye Res ; 230: 109441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958428

RESUMEN

The mechanics of accommodation is a complex process that involves multiple intraocular ocular structures. Recent studies suggest that there is deformation of the sclera during accommodation that may also play a role in accommodation, influencing ciliary muscle contraction and contributing to the accommodative response. However, the type and magnitude of the deformations measured varies significantly across studies. We present high-resolution synchronous OCT measurements of the anterior sclera contour and thickness and lens thickness acquired in real-time during accommodative responses to 4D step stimuli. The lens thickness was used as an assessment of objective accommodation. No changes in nasal and temporal anterior scleral contour and scleral thickness were found during accommodation within the precision of our measurements. Our results demonstrate that there are no significant scleral deformations during accommodation.


Asunto(s)
Cristalino , Cristalino/fisiología , Esclerótica , Tomografía de Coherencia Óptica/métodos , Acomodación Ocular , Cuerpo Ciliar
3.
Exp Eye Res ; 216: 108951, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051430

RESUMEN

PURPOSE: To determine the effect of temperature on the accommodative response of non-human primate crystalline lenses during simulated accommodation. METHODS: Eight lenses from 7 cynomolgus monkeys (Macaca fascicularis, ages: 4.5-7.3 years; post-mortem time: 17.0 ± 16.4 h) were mounted in a lens stretcher. Stretching experiments were performed on each lens at 24 °C (room temperature), then the tissue was warmed to 35 °C (intraocular temperature) and the stretching experiments were repeated. The lens diameter, thickness, anterior and posterior surface radii of curvature, optical power, and the stretching force (load) were measured at each stretch position and the linear optomechanical relationships were quantified: load-lens diameter, load-thickness, power-load, load-anterior radius, and load-posterior radius. The rate of change for each parameter was quantified by performing a linear regression. The slopes of the linear regressions were compared at the two temperatures using a paired sample t-test. RESULTS: The average changes in the lens with stretching at 24 °C and 35 °C were: 3.07 ± 0.17 and 2.58 ± 0.15 for load-lens diameter (g/mm), -2.38 ± 0.20 and -2.00 ± 0.32 for load-thickness (g/mm), -13.35 ± 1.21 and -13.75 ± 1.26 for power-load (D/g), 0.41 ± 0.10 and 0.34 ± 0.05 for load-anterior radius of curvature (g/mm), and 1.35 ± 0.24 and 1.31 ± 0.35 for load-posterior radius of curvature (g/mm), respectively. The changes in load-diameter and load-thickness with lens stretching were significantly different for the two temperatures. CONCLUSIONS: Temperature influences the change in lens shape observed during simulated accommodation in non-human primate lenses. These results suggest that lens stretching experiments and other optomechanical measurement techniques on ex vivo crystalline lenses be conducted at 35 °C and that the temperature of the tissue sample be documented and maintained constant to ensure repeatability.


Asunto(s)
Acomodación Ocular/fisiología , Temperatura Corporal/fisiología , Cristalino/fisiología , Estrés Mecánico , Temperatura , Envejecimiento/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Cristalino/diagnóstico por imagen , Macaca fascicularis , Tomografía de Coherencia Óptica
4.
Exp Eye Res ; 209: 108653, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34097905

RESUMEN

It is well known that human crystalline lens shape, dimensions and optical properties change throughout life and influence whole eye refraction. However, it is not clear if lens properties are associated with other ocular parameters. The purpose of the present study was to investigate the relationship of corneal and external globe dimensions with adult lens diameter (LD), lens thickness (LT) and lens power (LP) in order to determine if external factors influence lens properties. Postmortem human eyes (n = 66, age = 20-78 years) were obtained from the Ramayamma International Eye Bank, Hyderabad, India. Globe antero-posterior length (GAPL) and mean (average of horizontal and vertical) diameters of cornea (MCD) and globe (MGD) were measured using digital calipers. Eyes were dissected to produce ocular structures that contain the lens maintained in its accommodating framework, including intact zonules, ciliary body and sections of sclera. Specimens were mounted in a mechanical lens stretching system. LD, LT and LP were measured using high magnification retro-illumination photography, slit illumination photography and Scheiner principle-based optical system respectively in the unstretched (accommodated) state. Relationships between external globe and corneal dimensions and LD, LT or LP were assessed by multiple regression analysis. Age (0.012 ± 0.003 mm/year; p<0.001) and GAPL (0.185 ± 0.045 mm/mm; p<0.001) were significant (p<0.0001) predictors of LD. After adjusting for age-related increases, LD appears to be positively correlated with GAPL. Age (0.010 ± 0.004 mm/year; p = 0.009) and GAPL (-0.143 ± 0.060 mm/mm; p = 0.02) were significant (p = 0.001) predictors of LT. After adjusting for the age-related increase, LT appears to be negatively correlated with GAPL. Only age was a significant predictor of LP (-0.26 ± 0.04 D/year; p<0.001). The results suggest that, apart from aging, lens diameter and thickness are dependent on the anteroposterior length of the eye globe. Lens power is not influenced by globe dimensions.


Asunto(s)
Acomodación Ocular/fisiología , Envejecimiento/fisiología , Biometría/métodos , Córnea/anatomía & histología , Ojo/anatomía & histología , Cristalino/anatomía & histología , Refracción Ocular/fisiología , Adulto , Anciano , Córnea/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Adulto Joven
5.
Exp Eye Res ; 202: 108334, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33121973

RESUMEN

There is a great need for accurate biometric data on human lenses. To meet this, a compact tabletop optical comparator, the minishadowgraph, was built for measuring isolated eye lens shape and dimensions while the lens was fully immersed in supporting medium. The instrument was based around a specially designed cell and an illumination system which permitted image recording in both sagittal and equatorial (coronal) directions. Data were acquired with a digital camera and analyzed using a specially written MATLAB program as well as by manual measurements in image analysis software. The possible effect of lens orientation and gravity on the dimensions was examined by measuring dimensions with anterior or posterior surfaces up and by measuring lenses with calipers after removal from the minishadowgraph cell. Dimensions, curvatures and shape factors were obtained for 134 fully accommodated lenses ranging in age from birth to 88 years postnatal. Of these, 41 were from donors aged under 20 years, ages which are generally of limited availability. Thickness and diameter showed the same age-related trends described in previous studies but, for the lenses measured in air, age-dependent differences were observed in thickness (-5 to 0%) and diameter (+5 to 0%), consistent with gravitational sag. Anterior and posterior radii of curvature of the central 3 or 6 mm, depending on lens diameter, increase with age, with the anterior increase greater than the posterior. The anterior surface shape of the neonatal lens is that of a prolate ellipse and the posterior, an oblate ellipse. Both surfaces become hyperbolic after age 20. The data presented here on dimensions, shape and sagging will be of great value in assessing age-related changes in the optical and mechanical performance of the lens. In particular, the comprehensive data set from donors aged under 20 years provides a unique and valuable insight to the changes in size and shape during the early dynamic growth period of the lens.


Asunto(s)
Envejecimiento/fisiología , Cristalino/anatomía & histología , Acomodación Ocular/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biometría , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Fotogrametría , Donantes de Tejidos
6.
Exp Eye Res ; 205: 108481, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545121

RESUMEN

There have been many studies on lens properties in specific populations (e.g. in China, Europe, Singapore, etc.) some of which suggest there may be differences between populations. Differences could be caused by ethnic or environmental influences or experimental procedures. The purpose of this study is to evaluate if any differences exist between Indian and European populations in the central geometric and full shape properties of human lenses. Two custom-developed spectral domain optical coherence tomography systems were used to acquire the crystalline lens geometry: one in India (69 lenses from 59 donors) and the other in Spain (24 lenses from 19 donors). The steps for obtaining accurate 3-D models from optical coherence tomography raw images comprised of image segmentation, fan and optical distortion correction, tilt removal and registration. The outcome variables were lens equatorial diameter, lens thickness, anterior and posterior lens thicknesses and their ratio, central radius of curvature of the anterior and posterior lens surfaces, lens volume and lens surface area. A mixed effects model by maximum likelihood estimation was used to evaluate the effect of age, population and their interaction (age*population) on lens parameters. After adjusting for age, there were no population differences observed in anterior and posterior radii of curvature, equatorial diameter, lens thickness, anterior and posterior lens thicknesses and their ratio, volume and surface area (all p ≥ 0.08). There was also no effect of the interaction term on anterior and posterior radii of curvature, equatorial diameter, lens thickness, anterior and posterior lens thicknesses and their ratio, volume and surface area (all p ≥ 0.06). All central geometric and full shape parameters appeared to be comparable between the European and Indian populations. This is the first study to compare geometric and full shape lens parameters between different populations in vitro.


Asunto(s)
Pueblo Asiatico/genética , Cristalino/anatomía & histología , Forma de los Orgánulos/genética , Población Blanca/genética , Adulto , Biometría , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , India , Cristalino/diagnóstico por imagen , Funciones de Verosimilitud , Persona de Mediana Edad , Modelos Estadísticos , Tomografía de Coherencia Óptica/métodos , Adulto Joven
7.
Exp Eye Res ; 212: 108768, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34534541

RESUMEN

The mouse lens is frequently used both in vivo and ex vivo in ophthalmic research to model conditions affecting the human lens, such as presbyopia. The mouse lens has a delicate structure which is prone to damage and biomechanical changes both before and after extraction from the whole globe. When not properly controlled for, these changes can confound the biomechanical analysis of mouse lenses. In this study, atomic force microscopy microindentation was used to assess changes in the Young's Modulus of Elasticity of the mouse lens as a function of mouse age and postmortem time. Old mouse lenses measured immediately postmortem were significantly stiffer than young mouse lenses (p = 0.028). However, after 18 h of incubation, there was no measurable difference in lens stiffness between old and young mouse lenses (p = 0.997). This demonstrates the need for careful experimental control in experiments using the mouse lens, especially regarding postmortem time.


Asunto(s)
Envejecimiento , Cápsula del Cristalino/fisiología , Cristalino/fisiología , Microscopía de Fuerza Atómica/métodos , Animales , Elasticidad , Femenino , Cápsula del Cristalino/citología , Cristalino/citología , Ratones , Modelos Animales
8.
Biomed Opt Express ; 15(4): 2681-2696, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633089

RESUMEN

We present proof of concept for a handheld contact-type system capable of simultaneous optical coherence tomography (OCT) imaging of the retina and wide-field digital fundus color photography. The study focuses on demonstrating the feasibility of the proposed approach, particularly for eventual use in pediatric patients during examination under anesthesia in the operating room and in the neonatal intensive care unit. Direct contact of the probe with the cornea allows the photographer to maintain a stable position during imaging, reducing motion artifacts in the OCT images. Additionally, it simplifies the alignment process and increases the field of view of the optics. By integrating OCT and fundus imaging into a single device, the proposed compact modular design eliminates the need for separate, space-consuming systems dedicated to each imaging modality.

9.
JPhys Photonics ; 6(3): 035021, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38975030

RESUMEN

Lens biomechanical properties are critical for our eyes to accommodate. While it is well understood that lens mechanical properties change with age, different experimental techniques have been used over the years, with varying results on how the lens modulus changes. In this study, we developed a spatial-varying elasticity model to characterize the overall elastic modulus of the lens and establish its effect on accommodation. First, to validate the model, ex vivo porcine lenses underwent compression testing using biopsy punches of different diameters to change the percentage of nucleus within samples. Importantly, we found that, indeed, changing nucleus/cortex spatial ratio produces dramatic (∼7-fold) increase in overall sample modulus. Comparing the model with human lens spatial ratios, we demonstrate how changing spatial mechanics are more influential than peak modulus changes on overall elastic modulus. Next, in vivo clinical measurements of the spatial-varying lens modulus were used to generate a simplified mechanical-optical model of accommodation. We defined an ellipsoid lens with patient-derived modulus and geometry measurements, and a statics simulation and ray tracing analysis were performed through the deformed and undeformed lens. The resulting accommodation estimates agree with general accommodation expectations.

10.
Biomed Opt Express ; 15(5): 2876-2889, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855690

RESUMEN

Accommodation is the process by which the eye changes focus. These changes are the result of changes to the shape of the crystalline lens. Few prior studies have quantified the relation between lens shape and ocular accommodation, primarily at discrete static accommodation states. We present an instrument that enables measurements of the relation between changes in lens shape and changes in optical power continuously during accommodation. The system combines an autorefractor to measure ocular power, a visual fixation target to stimulate accommodation, and an optical coherence tomography (OCT) system to image the anterior segment and measure ocular distances. Measurements of ocular dimensions and refraction acquired dynamically on three human subjects are presented. The individual accommodative responses are analyzed to correlate the ocular power changes with changes in ocular dimensions.

11.
J Cataract Refract Surg ; 50(6): 637-643, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38465836

RESUMEN

PURPOSE: To quantify the angular dependence of monofocal intraocular lens (IOL) power. SETTING: Ophthalmic Biophysics Laboratory, Kallam Anji Reddy campus, L V Prasad Eye Institute, Hyderabad, India. DESIGN: Laboratory study. METHODS: Experiments were performed on IOLs from 2 different manufacturers (APPALENS 207, Appasamy Associates and SN60WF, Alcon Laboratories, Inc.). IOL powers ranged from 17 to 25 diopters (D). The IOLs were mounted in a fluid-filled chamber, and the on-axis and off-axis powers were measured using a laser ray tracing system over the central 3 mm zone with delivery angles ranging from -30 to +30 degrees in 5-degree increments. The position of the best focus was calculated for each IOL at each angle. The angular dependence of IOL power was compared with theoretical predictions. RESULTS: Peripheral defocus increased significantly with increasing incidence angle and power. The peripheral defocus at ±30 degrees increased from 5.8 to 8.5 D when the power increased from 17.5 to 24.5 D for APPALENS 207 and from 4.9 to 7.4 D when the power increased from 17 to 25 D for SN60WF. The mean difference between the measured and theoretical tangential power at ±30 degrees was 0.50 ± 0.16 D for the APPALENS 207 and -0.40 ± 0.10 D for the SN60WF, independent of IOL power. CONCLUSIONS: IOLs introduce a significant amount of peripheral defocus which varies significantly with IOL power and design. Given that peripheral defocus is related to lens power, replacement of the crystalline lens (approximately 24 D) with an IOL will produce a significant difference in peripheral defocus profile after surgery.


Asunto(s)
Lentes Intraoculares , Óptica y Fotónica , Humanos , Refracción Ocular/fisiología , Diseño de Prótesis
12.
Opt Lett ; 38(2): 85-7, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23454923

RESUMEN

We present a method for measuring the average group refractive index of the human crystalline lens in vivo using an optical coherence tomography (OCT) system which, allows full-length biometry of the eye. A series of OCT images of the eye including the anterior segment and retina were recorded during accommodation. Optical lengths of the anterior chamber, lens, and vitreous were measured dynamically along the central axis on the OCT images. The group refractive index of the crystalline lens along the central axis was determined using linear regression analysis of the intraocular optical length measurements. Measurements were acquired on three subjects of age 21, 24, and 35 years. The average group refractive index for the three subjects was, respectively, n=1.41, 1.43, and 1.39 at 835 nm.


Asunto(s)
Cristalino/fisiología , Refracción Ocular/fisiología , Refractometría , Tomografía de Coherencia Óptica/métodos , Acomodación Ocular , Adulto , Algoritmos , Biometría/métodos , Humanos , Cristalino/anatomía & histología , Modelos Estadísticos , Retina/anatomía & histología , Retina/fisiología , Visión Ocular
13.
Invest Ophthalmol Vis Sci ; 64(2): 12, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753168

RESUMEN

Purpose: To determine whether lens mechanical dynamics change with age and with accommodative demands. Methods: Lens thickness microfluctuations were measured using a high-speed custom-built spectral domain optical coherence tomography system in five young adults (20 to 25 years old) at 0 diopters (D), 2 D, 4 D, and maximum accommodative demand and in five prepresbyopes (38 to 45 years old) under relaxed and maximal accommodation. For each state, the measurements were repeated four times during the same session. Images of the central 2-mm zone of the lens comprising 170 A-lines/frame were acquired for 10 seconds, and axial lens thickness change was measured. Lens thickness microfluctuations (µm²/Hz) were assessed by integrating the power spectrum of lens thickness microfluctuations between 0 and 4 Hz. Results: The amplitude of lens microfluctuations was higher in the accommodated states than in the relaxed state in both age groups. Lens microfluctuations were higher in young adult participants than in prepresbyopes, with a significant difference in relaxed and maximally accommodated states (P = 0.04 and P = 0.04). In the young participants, the amplitude of microfluctuations reached a plateau at maximum accommodation. Conclusions: Lens mechanical dynamics are both age and accommodation dependent. The decrease in lens thickness microfluctuations with age is consistent with an age-related increase in lens stiffness or decrease of the ciliary muscle displacement. The lens does not contribute to the high-frequency component of ocular dioptric microfluctuations.


Asunto(s)
Acomodación Ocular , Cristalino , Adulto Joven , Humanos , Adulto , Persona de Mediana Edad , Cristalino/diagnóstico por imagen , Cristalino/fisiología , Cuerpo Ciliar/diagnóstico por imagen
14.
Biomed Opt Express ; 14(2): 608-626, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36874490

RESUMEN

Quantifying the full 3-D shape of the human crystalline lens is important for improving intraocular lens power or sizing calculations in treatments of cataract and presbyopia. In a previous work we described a novel method for the representation of the full shape of the ex vivo crystalline lens called eigenlenses, which proved more compact and accurate than compared state-of-the art methods of crystalline lens shape quantification. Here we demonstrate the use of eigenlenses to estimate the full shape of the crystalline lens in vivo from optical coherence tomography images, where only the information visible through the pupil is available. We compare the performance of eigenlenses with previous methods of full crystalline lens shape estimation, and demonstrate an improvement in repeatability, robustness and use of computational resources. We found that eigenlenses can be used to describe efficiently the crystalline lens full shape changes with accommodation and refractive error.

15.
Biomed Opt Express ; 14(8): 4261-4276, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37799671

RESUMEN

Quantifying human crystalline lens geometry as a function of age and accommodation is important for improved cataract and presbyopia treatments. In previous works we presented eigenlenses as a basis of 3-D functions to represent the full shape of the crystalline lens ex vivo. Also, we presented the application of eigenlenses to estimate the full shape of the lens in vivo from 3-D optical coherence tomography (OCT) images, where only the central part of the lens -visible through the pupil- is available. The current work presents a validation of the use of eigenlenses to estimate in vivo the full shape of dis-accommodated lenses. We used 14 ex vivo crystalline lenses from donor eyes (11-54 y/o) mounted in a lens stretcher, and measured the geometry and the power of the lenses using a combined OCT and ray tracing aberrometry system. Ex vivo, the full extent of the lens is accessible from OCT because the incident light is not blocked by the iris. We measured in non-stretched (fully accommodated) and stretched (mimicking in vivo dis-accommodated lenses) conditions. Then, we simulated computationally in vivo conditions on the obtained ex vivo lenses geometry (assuming that just the portion of the lens within a given pupil is available), and estimated the full shape using eigenlenses. The mean absolute error (MAE) between estimated and measured lens' diameters and volumes were MAE = 0.26 ± 0.18 mm and MAE = 7.0 ± 4.5 mm3, respectively. Furthermore, we concluded that the estimation error between measured and estimated lenses did not depend on the accommodative state (change in power due to stretching), and thus eigenlenses are also useful for the full shape estimation of in vivo dis-accommodated lenses.

16.
Optom Vis Sci ; 89(5): E709-18, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22466105

RESUMEN

PURPOSE: To propose a method to correct optical coherence tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. METHODS: Two-dimensional images of nine human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared with the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley, and lens thickness shifts from the nominal data. RESULTS: Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface in terms of root mean square and peak values, with errors <6 and 13 µm, respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8 µm. CONCLUSIONS: The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in two dimension, it is expected that three-dimensional imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger populations.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Cristalino/anatomía & histología , Tomografía de Coherencia Óptica/métodos , Acomodación Ocular , Adolescente , Adulto , Anciano , Cadáver , Niño , Femenino , Humanos , Cristalino/fisiología , Masculino , Persona de Mediana Edad , Refracción Ocular , Reproducibilidad de los Resultados , Adulto Joven
17.
Biomed Opt Express ; 13(10): 5131-5150, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36425626

RESUMEN

The lens of the eye has a refractive index gradient that changes as the lens grows throughout life. These changes play a key role in the optics of the eye. Yet, the lens is generally simulated using a homogeneous model with an equivalent index that does not accurately represent the gradient. We present an analytical paraxial model of the gradient lens of the eye that gives the direct relation between refractive index distribution and paraxial characteristics. The model accurately simulates the changes in lens power with age and accommodation. It predicts that a decrease in equivalent index with age is associated with a flattening of the axial refractive index profile and that changes in lens power with accommodation are due primarily to changes in the axial variation of the iso-indicial curvature, consistent with Gullstrand's intracapsular theory of accommodation. The iso-indicial curvature gradient causes a shift of the principal planes compared to the homogeneous equivalent model. This shift introduces a clinically significant error in eye models that implement a homogenous lens. Our gradient lens model can be used in eye models to better predict the optics of the eye and the changes with age and accommodation.

18.
Biomed Opt Express ; 13(5): 2810-2823, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35774316

RESUMEN

Quantifying shape changes in the ciliary muscle during accommodation is essential in understanding the potential role of the ciliary muscle in presbyopia. The ciliary muscle can be imaged in-vivo using OCT but quantifying the ciliary muscle shape from these images has been challenging both due to the low contrast of the images at the apex of the ciliary muscle and the tedious work of segmenting the ciliary muscle shape. We present an automatic-segmentation tool for OCT images of the ciliary muscle using fully convolutional networks. A study using a dataset of 1,039 images shows that the trained fully convolutional network can successfully segment ciliary muscle images and quantify ciliary muscle thickness changes during accommodation. The study also shows that EfficientNet outperforms other current backbones of the literature.

19.
J Cataract Refract Surg ; 48(9): 1016-1022, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297814

RESUMEN

PURPOSE: To determine whether patient-customized paraxial eye models that do not rely on exact ray tracing and do not consider aberrations can accurately predict pseudophakic refraction. SETTING: Bascom Palmer Eye Institute, Miami, Florida. DESIGN: Prospective study. METHODS: Cataract surgery patients with and without a history of refractive surgery were included. Manifest refraction, corneal biometry, and extended-depth optical coherence tomography (OCT) imaging were performed at least 1 month postoperatively. Corneal and OCT biometry were used to create paraxial eye models. The pseudophakic refraction simulated using the eye model was compared with measured refraction to calculate prediction error. RESULTS: 49 eyes of 33 patients were analyzed, of which 12 eyes from 9 patients had previous refractive surgery. In eyes without a history of refractive surgery, the mean prediction error was 0.08 ± 0.33 diopters (D), ranging from -0.56 to 0.79 D, and the mean absolute error was 0.27 ± 0.21 D. 31 eyes were within ±0.5 D, and 36 eyes were within ±0.75 D. In eyes with previous refractive surgery, the mean prediction error was -0.44 ± 0.58 D, ranging from -1.42 to 0.32 D, and the mean absolute error was 0.56 ± 0.46 D. 7 of 12 eyes were within ±0.5 D, 8 within ±0.75 D, and 10 within ±1 D. All eyes were within ±1.5 D. CONCLUSIONS: Accurate calculation of refraction in postcataract surgery patients can be performed using paraxial optics. Measurement uncertainties in ocular biometry are a primary source of residual prediction error.


Asunto(s)
Lentes Intraoculares , Facoemulsificación , Biometría , Humanos , Implantación de Lentes Intraoculares , Óptica y Fotónica , Estudios Prospectivos , Refracción Ocular , Estudios Retrospectivos , Agudeza Visual
20.
Exp Eye Res ; 92(6): 490-4, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21420953

RESUMEN

The purpose of this project is to measure the elasticity of the human and non-human primate lens capsule at the microscopic scale using Atomic Force Microscopy (AFM). Elasticity measurements were performed using AFM on the excised anterior lens capsule from 9 cynomolgus monkey (5.9-8.0 years), 8 hamadryas baboon (2.8-10.1 years), and 18 human lenses (33-79 years). Anterior capsule specimens were obtained by performing a 5 mm continuous curvilinear capsulorhexis and collecting the resulting disk of capsular tissue. To remove the lens epithelial cells the specimen was soaked in 0.1% trypsin and 0.02% EDTA for 5 min, washed, and placed on a Petri dish and immersed in DMEM. Elasticity measurements of the capsule were performed with a laboratory-built AFM system custom designed for force measurements of ophthalmic tissues. The capsular specimens were probed with an AFM cantilever tip to produce force-indentation curves for each specimen. Young's modulus was calculated from the force-indentation curves using the model of Sneddon for a conical indenter. Young's modulus of elasticity was 20.1-131 kPa for the human lens capsule, 9.19-117 kPa for the cynomolgus lens capsule, and 13.1-62.4 kPa for the baboon lens capsule. Young's modulus increased significantly with age in humans (p = 0.03). The age range of the monkey and baboon samples was not sufficient to justify an analysis of age dependence. The capsule elasticity of young humans (<45 years) was not statistically different from that of the monkey and baboon. In humans, there is an increase in lens capsule stiffness at the microscale that could be responsible for an increase in lens capsule bulk stiffness.


Asunto(s)
Envejecimiento/fisiología , Elasticidad/fisiología , Cápsula del Cristalino/fisiología , Microscopía de Fuerza Atómica , Adulto , Anciano , Animales , Capsulorrexis , Módulo de Elasticidad , Tejido Elástico , Humanos , Macaca fascicularis , Persona de Mediana Edad , Papio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA