RESUMEN
Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.
Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Puntos de Control del Ciclo Celular/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/radioterapia , Linfocitos T/efectos de los fármacos , Linfocitos T/efectos de la radiación , Animales , Antígeno B7-H1/metabolismo , Femenino , Humanos , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de la radiaciónRESUMEN
Although influenza vaccination is recommended for all adults annually, the incidence of vaccine failure, defined as weak or absent increase in neutralizing Ab titers, is increased in the elderly compared with young adults. The T follicular helper cell (Tfh) subset of CD4 T cells provides B cell help in germinal centers and is necessary for class-switched Ab responses. Previous studies suggested a role for circulating Tfh cells (cTfh) following influenza vaccination in adults, but cTfh have not been studied in elderly adults in whom weak vaccine responses are often observed. In this study, we studied cTfh expressing CXCR5 and programmed death-1 (PD-1). cTfh from elderly adults were present at reduced frequency, had decreased in vitro B cell help ability, and had greater expression of ICOS compared with young adults. At 7 d after inactivated influenza vaccination, cTfh correlated with influenza vaccine-specific IgM and IgG responses in young adults but not in elderly adults. In sum, we have identified aging-related changes in cTfh that correlated with reduced influenza vaccine responses. Future rational vaccine design efforts should incorporate Tfh measurement as an immune correlate of protection, particularly in the setting of aging.
Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Vacunas contra la Influenza/administración & dosificación , Receptor de Muerte Celular Programada 1 , Receptores CXCR5 , Adulto , Factores de Edad , Envejecimiento/sangre , Anticuerpos Antivirales/sangre , Linfocitos B/citología , Linfocitos T CD4-Positivos/metabolismo , Femenino , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Vacunas contra la Influenza/inmunología , MasculinoRESUMEN
Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways.
Asunto(s)
Genómica/métodos , Infecciones del Sistema Respiratorio/inmunología , Femenino , Humanos , Masculino , Infecciones del Sistema Respiratorio/patologíaRESUMEN
Aged individuals have increased morbidity and mortality following influenza and other viral infections, despite previous exposure or vaccination. Mouse and human studies suggest increased senescence and/or exhaustion of influenza virus-specific CD8 T cells with advanced age. However, neither the relationship between senescence and exhaustion nor the underlying transcriptional pathways leading to decreased function of influenza virus-specific cellular immunity in elderly humans are well-defined. Here, we demonstrate that increased percentages of CD8 T cells from aged individuals express CD57 and KLRG1, along with PD-1 and other inhibitory receptors, markers of senescence, or exhaustion, respectively. Expression of T-box transcription factors, T-bet and Eomes, were also increased in CD8 T cells from aged subjects and correlated closely with expression of CD57 and KLRG1. Influenza virus-specific CD8 T cells from aged individuals exhibited decreased functionality with corresponding increases in CD57, KLRG1, and T-bet, a molecular regulator of terminal differentiation. However, in contrast to total CD8 T cells, influenza virus-specific CD8 T cells had altered expression of inhibitory receptors, including lower PD-1, in aged compared with young subjects. Thus, our data suggest a prominent role for senescence and/or terminal differentiation for influenza virus-specific CD8 T cells in elderly subjects.
Asunto(s)
Envejecimiento/inmunología , Linfocitos T CD8-positivos/inmunología , Senescencia Celular/inmunología , Gripe Humana/inmunología , Proteínas de Dominio T Box/inmunología , Adulto , Anciano , Envejecimiento/metabolismo , Linfocitos T CD8-positivos/metabolismo , Femenino , Citometría de Flujo , Humanos , Gripe Humana/metabolismo , Masculino , Proteínas de Dominio T Box/metabolismo , Adulto JovenRESUMEN
Current yearly influenza virus vaccines induce strain-specific neutralizing antibody (NAb) responses providing protective immunity to closely matched viruses. However, these vaccines are often poorly effective in high-risk groups such as the elderly and challenges exist in predicting yearly or emerging pandemic influenza virus strains to include in the vaccines. Thus, there has been considerable emphasis on understanding broadly protective immunological mechanisms for influenza virus. Recent studies have implicated memory CD4 T cells in heterotypic immunity in animal models and in human challenge studies. Here we examined how influenza virus vaccination boosted CD4 T cell responses in younger versus aged humans. Our results demonstrate that while the magnitude of the vaccine-induced CD4 T cell response and number of subjects responding on day 7 did not differ between younger and aged subjects, fewer aged subjects had peak responses on day 14. While CD4 T cell responses were inefficiently boosted against NA, both HA and especially nucleocaspid protein- and matrix-(NP+M) specific responses were robustly boosted. Pre-existing CD4 T cell responses were associated with more robust responses to influenza virus NP+M, but not H1 or H3. Finally pre-existing strain-specific NAb decreased the boosting of CD4 T cell responses. Thus, accumulation of pre-existing influenza virus-specific immunity in the form of NAb and cross-reactive T cells to conserved virus proteins (e.g. NP and M) over a lifetime of exposure to infection and vaccination may influence vaccine-induced CD4 T cell responses in the aged.