Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anim Sci ; 95(7): 3093-3102, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28727119

RESUMEN

Inclusion of NPN in diets may compensate the deficient supply of nonessential AA (NEAA) in very low CP levels. To assess this, 2 studies were conducted to determine the effect of supplementing NPN and specific NEAA to diets severely deficient in NEAA nitrogen (NEAA-N) on growth performance of pigs. In Exp. 1, 48 gilts (initial BW 15.2 ± 1.3 kg; 2 pigs per pen; 6 pens per treatment) were randomly assigned to 1 of the 4 dietary treatments: 1) positive control (Pos Ctrl), not deficient in essential AA (EAA) and total N, with all N supplied from intact protein (casein and soybean meal) or crystalline EAA, (2) negative control (Neg Ctrl), supplying the same amount of potentially limiting EAA as Pos Ctrl but deficient in NEAA-N, 3) Neg Ctrl plus 1.45% CP from ammonia-N (low NPN), and 4) Neg Ctrl plus 2.90% CP from ammonia-N (high NPN), supplying the same amount of digestible N as the Pos Ctrl diet. Pigs were fed ad libitum, and ADG and ADFI were monitored weekly during a 3-wk period. Gain:feed improved linearly ( < 0.05) with supplementation of ammonia-N in diets. Gain:feed for high NPN was similar ( = 0.496) to that for Pos Crtl (0.51 and 0.52, respectively). In the Exp. 2, 72 individually housed barrows (initial BW 13.5 ± 0.6 kg; 8 pigs per treatment) were assigned to 9 dietary treatments. A basal diet was formulated to be deficient in NEAA-N with a ratio of EAA-N to total N (EAA-N:TN) of 0.74. The basal diet was supplemented with 1 of 4 different N sources (urea, ammonia, glutamic acid, and a mixture of NEAA) at 2 levels each, decreasing the final EAA-N:TN to 0.63 and 0.55, respectively. Pigs were fed at 3.0 times maintenance energy requirements during 9 d of adaptation and 3 wk of observations. Body weight was monitored weekly. At the end of the experiment, blood samples from the portal vein and abdominal aorta were collected to determine ammonia- and urea-N concentrations. Final BW, ADG, and G:F increased ( < 0.05) with supplemented ammonia, glutamate, and the NEAA mix but not (> 0.10) with urea. Final BW, ADG, and G:F were not different ( > 0.05) between pigs fed the ammonia, glutamate, and NEAA mix supplemented diets. Urea concentration in portal and arterial blood plasma increased linearly ( < 0.05) with urea intake. In conclusion, growing pigs can utilize N from ammonia as efficiently as intact protein or NEAA as a source of extra N when diets are severely deficient in NEAA-N.


Asunto(s)
Suplementos Dietéticos , Nitrógeno/metabolismo , Porcinos/fisiología , Aminoácidos/metabolismo , Amoníaco/metabolismo , Alimentación Animal/análisis , Animales , Peso Corporal , Dieta/veterinaria , Metabolismo Energético , Femenino , Distribución Aleatoria , Glycine max , Porcinos/crecimiento & desarrollo , Urea/sangre
2.
J Anim Sci ; 95(10): 4481-4489, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29108040

RESUMEN

Amino acid usage for protein retention, and, consequently, the AA profile of retained protein, is the main factor for determining AA requirements in growing animals. The objective of the present study was to determine the effect of supplementing ammonia N on whole-body N retention and the AA profile of retained protein in growing pigs fed a diet deficient in nonessential AA (NEAA) N. In total, 48 barrows with a mean initial BW of 13.6 kg (SD 0.7) were used. At the beginning of the study, 8 pigs were euthanized for determination of initial protein mass. The remaining animals were individually housed and fed 1 of 5 dietary treatments. A common basal diet (95% of experimental diets) was formulated to meet the requirements for all essential AA (EAA) but to be deficient in NEAA N (CP = 8.01%). The basal diet was supplemented (5%) with cornstarch (negative control) or 2 N sources (ammonia or NEAA) at 2 levels each to supply 1.35 or 2.70% extra CP. The final standardized ileal digestible (SID) NEAA content in the high-NEAA-supplemented diet (positive control) was based on the NEAA profile of whole-body protein of 20-kg pigs, and it was expected to reduce the endogenous synthesis of NEAA. Pigs were fed at 3.0 times maintenance energy requirements for ME in 3 equal meals daily. At the end of a 3-wk period, pigs were euthanized and the carcass and visceral organs were weighed, frozen, and ground for determination of protein mass. From pigs in the initial, negative control, high-ammonia, and high-NEAA groups, AA contents in the carcass and pooled visceral organs were analyzed to determine the total and deposited protein AA profile, dietary EAA efficiencies, and minimal de novo synthesis of NEAA. Carcass weight and whole-body N retention linearly increased ( < 0.05) with N supplementation. The AA profile of protein and deposited protein in the carcass was not different ( > 0.10) between N sources, but Cys content increased ( < 0.05) with NEAA compared with ammonia in visceral organ protein and deposited protein. The dietary SID EAA efficiency for increasing EAA deposition in whole-body protein increased ( < 0.05) with N supplementation, but it was not different ( > 0.10) between N sources. The de novo synthesis of NEAA increased ( < 0.05) for ammonia compared with NEAA supplementation. In conclusion, adding ammonia as a N source to diets deficient in NEAA N increases whole-body N retention without affecting the carcass AA profile.


Asunto(s)
Aminoácidos/metabolismo , Amoníaco/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Nitrógeno/metabolismo , Porcinos/fisiología , Animales , Dieta/veterinaria , Íleon/metabolismo , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA