Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 563(7733): 652-656, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464344

RESUMEN

The strigolactones, a class of plant hormones, regulate many aspects of plant physiology. In the inhibition of shoot branching, the α/ß hydrolase D14-which metabolizes strigolactone-interacts with the F-box protein D3 to ubiquitinate and degrade the transcription repressor D53. Despite the fact that multiple modes of interaction between D14 and strigolactone have recently been determined, how the hydrolase functions with D3 to mediate hormone-dependent D53 ubiquitination remains unknown. Here we show that D3 has a C-terminal α-helix that can switch between two conformational states. The engaged form of this α-helix facilitates the binding of D3 and D14 with a hydrolysed strigolactone intermediate, whereas the dislodged form can recognize unmodified D14 in an open conformation and inhibits its enzymatic activity. The D3 C-terminal α-helix enables D14 to recruit D53 in a strigolactone-dependent manner, which in turn activates the hydrolase. By revealing the structural plasticity of the SCFD3-D14 ubiquitin ligase, our results suggest a mechanism by which the E3 coordinates strigolactone signalling and metabolism.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Oryza/enzimología , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Compuestos Heterocíclicos con 3 Anillos/química , Lactonas/química , Modelos Moleculares , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Relación Estructura-Actividad , Ubiquitina , Ubiquitinación
2.
Mol Cell ; 63(2): 249-260, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27373336

RESUMEN

Ubiquitin-specific proteases (USPs) constitute the largest family of deubiquitinating enzymes, whose catalytic competency is often modulated by their binding partners through unknown mechanisms. Here we report on a series of crystallographic and biochemical analyses of an evolutionarily conserved deubiquitinase, USP12, which is activated by two ß-propeller proteins, UAF1 and WDR20. Our structures reveal that UAF1 and WDR20 interact with USP12 at two distinct sites far from its catalytic center. Without increasing the substrate affinity of USP12, the two ß-propeller proteins potentiate the enzyme through different allosteric mechanisms. UAF1 docks at the distal end of the USP12 Fingers domain and induces a cascade of structural changes that reach a critical ubiquitin-contacting loop adjacent to the catalytic cleft. By contrast, WDR20 anchors at the base of this loop and remotely modulates the catalytic center of the enzyme. Our results provide a mechanistic example for allosteric activation of USPs by their regulatory partners.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Regulación Alostérica , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cumarinas/metabolismo , Células HEK293 , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Complejos Multiproteicos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Transfección , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Ubiquitinación , Ubiquitinas/metabolismo
3.
Plant Physiol ; 190(4): 2722-2738, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36124979

RESUMEN

The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferasas (Aceptor de Grupo Alcohol) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos de Inositol/metabolismo , Plantas/metabolismo , Polifosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(8): 4088-4098, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32034103

RESUMEN

The COP9 signalosome (CSN) is an evolutionarily conserved eight-subunit (CSN1-8) protein complex that controls protein ubiquitination by deneddylating Cullin-RING E3 ligases (CRLs). The activation and function of CSN hinges on its structural dynamics, which has been challenging to decipher by conventional tools. Here, we have developed a multichemistry cross-linking mass spectrometry approach enabled by three mass spectometry-cleavable cross-linkers to generate highly reliable cross-link data. We applied this approach with integrative structure modeling to determine the interaction and structural dynamics of CSN with the recently discovered ninth subunit, CSN9, in solution. Our results determined the localization of CSN9 binding sites and revealed CSN9-dependent structural changes of CSN. Together with biochemical analysis, we propose a structural model in which CSN9 binding triggers CSN to adopt a configuration that facilitates CSN-CRL interactions, thereby augmenting CSN deneddylase activity. Our integrative structure analysis workflow can be generalized to define in-solution architectures of dynamic protein complexes that remain inaccessible to other approaches.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Espectrometría de Masas/métodos , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
5.
Proc Natl Acad Sci U S A ; 117(8): 4117-4124, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047038

RESUMEN

The Cullin-RING ligases (CRLs) are the largest family of ubiquitin E3s activated by neddylation and regulated by the deneddylase COP9 signalosome (CSN). The inositol polyphosphate metabolites promote the formation of CRL-CSN complexes, but with unclear mechanism of action. Here, we provide structural and genetic evidence supporting inositol hexakisphosphate (IP6) as a general CSN cofactor recruiting CRLs. We determined the crystal structure of IP6 in complex with CSN subunit 2 (CSN2), based on which we identified the IP6-corresponding electron density in the cryoelectron microscopy map of a CRL4A-CSN complex. IP6 binds to a cognate pocket formed by conserved lysine residues from CSN2 and Rbx1/Roc1, thereby strengthening CRL-CSN interactions to dislodge the E2 CDC34/UBE2R from CRL and to promote CRL deneddylation. IP6 binding-deficient Csn2K70E/K70E knockin mice are embryonic lethal. The same mutation disabled Schizosaccharomyces pombe Csn2 from rescuing UV-hypersensitivity of csn2-null yeast. These data suggest that CRL transition from the E2-bound active state to the CSN-bound sequestered state is critically assisted by an interfacial IP6 small molecule, whose metabolism may be coupled to CRL-CSN complex dynamics.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Calorimetría/métodos , Eliminación de Gen , Técnicas de Sustitución del Gen , Genes Transgénicos Suicidas , Genotipo , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae , Organismos Libres de Patógenos Específicos , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
6.
Fish Shellfish Immunol ; 127: 23-34, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661767

RESUMEN

Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a crucial role in the Toll-like receptor/IL-1R signal pathway, which mediates the downstream signal transduction involved in innate and adaptive immunity. In the present study, an IRAK4 homologue (named as MaIRAK4) from blunt snout bream (Megalobrama amblycephala) was cloned and characterized. The open reading frame (ORF) of MaIRAK4 contains 1422 nucleotides, encoding a putative protein of 473 amino acids. Protein structural analysis revealed that MaIRAK4 has an N-terminal death domain (DD) and a central kinase domain (S_TKc), similar to those of mammals and other fishes. Multiple sequence alignment demonstrated that MaIRAK4 is highly homologous with that of grass carp (97.67%). The qRT-PCR analysis showed that MaIRAK4 expressed widely in all examined tissues, including heart, liver, spleen, kidney, head-kidney, gill, intestine and muscle, with the highest expression in the liver and spleen. After stimulation with LPS, MaIRAK4 expression upregulated significantly and reached a peak at 6 h and 12 h post LPS stimulation in the spleen and head-kidney, respectively. After challenge with Aeromonas hydrophila, MaIRAK4 expression peaked at 48 h and 72 h in spleen/head-kidney and liver, respectively. These results implied that MaIRAK4 is involved in the host defense against bacterial infection. Subcellular localization analysis indicated that MaIRAK4 distributed in the cytoplasm. Co-immunoprecipitation and subcellular co-localization assay revealed that MaIRAK4 can combine with MaMyD88 through DD domain. MaIRAK4 overexpression can induce slightly the NF-κB promoter activity in HEK 293 cells. However, the activity of NF-κB promoter was dramatically enhanced after co-transfection with MaIRAK4 and MaMyD88 plasmids. The results showed that MaIRAK4 was involved in NF-κB signal pathway mediated by maMyD88. The expression level of pro-inflammatory cytokines (IL-1ß, IL-6, IL-8 and TNF-α) decreased significantly after the siRNA-mediated knockdown of MaIRAK4. Together, these results suggest that MaIRAK4 plays an important function in the innate immunity of M. amblycephala by inducing cytokines expression.


Asunto(s)
Cyprinidae , Cipriniformes , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Citocinas/metabolismo , ADN Complementario/metabolismo , Proteínas de Peces/química , Células HEK293 , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Mamíferos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal
7.
Nature ; 504(7480): 406-10, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24336215

RESUMEN

Strigolactones (SLs), a newly discovered class of carotenoid-derived phytohormones, are essential for developmental processes that shape plant architecture and interactions with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Despite the rapid progress in elucidating the SL biosynthetic pathway, the perception and signalling mechanisms of SL remain poorly understood. Here we show that DWARF 53 (D53) acts as a repressor of SL signalling and that SLs induce its degradation. We find that the rice (Oryza sativa) d53 mutant, which produces an exaggerated number of tillers compared to wild-type plants, is caused by a gain-of-function mutation and is insensitive to exogenous SL treatment. The D53 gene product shares predicted features with the class I Clp ATPase proteins and can form a complex with the α/ß hydrolase protein DWARF 14 (D14) and the F-box protein DWARF 3 (D3), two previously identified signalling components potentially responsible for SL perception. We demonstrate that, in a D14- and D3-dependent manner, SLs induce D53 degradation by the proteasome and abrogate its activity in promoting axillary bud outgrowth. Our combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signalling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.


Asunto(s)
Lactonas/metabolismo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteolisis , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación/genética , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica
8.
Proc Natl Acad Sci U S A ; 113(13): 3503-8, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976604

RESUMEN

The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL-CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50 of 20 nM, acts as an intermolecular "glue," increasing cullin-CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL-CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL-CSN system and are potential targets for cancer therapy in conjunction with MLN4924.


Asunto(s)
Proteínas Cullin/metabolismo , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Ácido Fítico/biosíntesis , Secuencia de Aminoácidos , Complejo del Señalosoma COP9 , Dominio Catalítico , Proteínas Cullin/química , Proteínas Cullin/genética , Estabilidad de Enzimas , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Dominios y Motivos de Interacción de Proteínas , Homología de Secuencia de Aminoácido , Electricidad Estática , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Plant Cell ; 27(4): 1082-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25901085

RESUMEN

Diphosphorylated inositol polyphosphates, also referred to as inositol pyrophosphates, are important signaling molecules that regulate critical cellular activities in many eukaryotic organisms, such as membrane trafficking, telomere maintenance, ribosome biogenesis, and apoptosis. In mammals and fungi, two distinct classes of inositol phosphate kinases mediate biosynthesis of inositol pyrophosphates: Kcs1/IP6K- and Vip1/PPIP5K-like proteins. Here, we report that PPIP5K homologs are widely distributed in plants and that Arabidopsis thaliana VIH1 and VIH2 are functional PPIP5K enzymes. We show a specific induction of inositol pyrophosphate InsP8 by jasmonate and demonstrate that steady state and jasmonate-induced pools of InsP8 in Arabidopsis seedlings depend on VIH2. We identify a role of VIH2 in regulating jasmonate perception and plant defenses against herbivorous insects and necrotrophic fungi. In silico docking experiments and radioligand binding-based reconstitution assays show high-affinity binding of inositol pyrophosphates to the F-box protein COI1-JAZ jasmonate coreceptor complex and suggest that coincidence detection of jasmonate and InsP8 by COI1-JAZ is a critical component in jasmonate-regulated defenses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Fosfatos de Inositol/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
11.
Plant Physiol ; 169(1): 803-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149575

RESUMEN

Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/química , Proteolisis , Secuencias de Aminoácidos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
12.
Nature ; 468(7322): 400-5, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20927106

RESUMEN

Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved α-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Fosfatos de Inositol/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ciclopentanos/química , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Indenos/química , Indenos/metabolismo , Isoleucina/análogos & derivados , Isoleucina/química , Isoleucina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxilipinas/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Reguladores del Crecimiento de las Plantas/química , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal
13.
Chemistry ; 20(9): 2454-8, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24488698

RESUMEN

A biologically inspired organocatalytic one-pot synthesis of highly functionalized pyridazines, which are ubiquitous structural units in a number of biologically active compounds, has been developed by starting from readily available diazo compounds and Morita-Baylis-Hillman (MBH) carbonates. Under mild reaction conditions, this synthetic route tolerated significant substrate variation to deliver a broad range of substituted products, including CF3 -substituted pyridazines derivatives. Moreover, the introduction of trifluoromethyl groups into the ring of pyridazine could be completed conveniently from 2,2,2-trifluorodiazoethane.

14.
Nat Chem Biol ; 8(5): 477-85, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22466420

RESUMEN

The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5-Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Unión al ADN/química , Proteínas F-Box/química , Ácidos Indolacéticos/química , Proteínas Nucleares/química , Receptores de Superficie Celular/química , Secuencia de Aminoácidos , Herbicidas/química , Datos de Secuencia Molecular , Picloram/química
15.
Org Biomol Chem ; 12(32): 6085-8, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25004112

RESUMEN

A highly efficient asymmetric organocatalytic addition of 3-substituted oxindole to isatin-derived ketimine is reported with excellent stereocontrol (>99 : 1 dr, >99% ee) under mild conditions. This method provides access to the bisoxindole structure moiety with two vicinal quaternary stereogenic centers.

16.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798357

RESUMEN

Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function 1 . As a substrate receptor of the CULLIN3-RBX1 E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma (MB) 2 , the most common embryonal brain tumor in children, and pineoblastoma 3 . These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST 4 . However, their mechanism of action remains unresolved. Here, we elucidate the mechanistic basis by which KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2, the direct neomorphic target of the substrate receptor. Using deep mutational scanning, we systematically map the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy (cryo-EM) analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat propeller domains. The interface between HDAC1 and one of the KBTBD4 propellers is stabilized by the MB mutations, which directly insert a bulky side chain into the active site pocket of HDAC1. Our structural and mutational analyses inform how this hotspot E3-neo-substrate interface can be chemically modulated. First, our results unveil a converging shape complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface, the aberrant degradation of CoREST, and the growth of KBTBD4-mutant MB models. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions and pharmacological strategies to modulate their action for therapeutic applications.

17.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798619

RESUMEN

UM171 is a potent small molecule agonist of ex vivo human hematopoietic stem cell (HSC) self-renewal, a process that is tightly controlled by epigenetic regulation. By co-opting KBTBD4, a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, UM171 promotes the degradation of members of the CoREST transcriptional corepressor complex, thereby limiting HSC attrition. However, the direct target and mechanism of action of UM171 remain unclear. Here, we reveal that UM171 acts as a molecular glue to induce high-affinity interactions between KBTBD4 and HDAC1 to promote the degradation of select HDAC1/2 corepressor complexes. Through proteomics and chemical inhibitor studies, we discover that the principal target of UM171 is HDAC1/2. Cryo-electron microscopy (cryo-EM) analysis of dimeric KBTBD4 bound to UM171 and the LSD1-HDAC1-CoREST complex unveils an unexpected asymmetric assembly, in which a single UM171 molecule enables a pair of KBTBD4 KELCH-repeat propeller domains to recruit HDAC1 by clamping on its catalytic domain. One of the KBTBD4 propellers partially masks the rim of the HDAC1 active site pocket, which is exploited by UM171 to extend the E3-neo-substrate interface. The other propeller cooperatively strengthens HDAC1 binding via a separate and distinct interface. The overall neomorphic interaction is further buttressed by an endogenous cofactor of HDAC1-CoREST, inositol hexakisphosphate, which makes direct contacts with KBTBD4 and acts as a second molecular glue. The functional relevance of the quaternary complex interaction surfaces defined by cryo-EM is demonstrated by in situ base editor scanning of KBTBD4 and HDAC1. By delineating the direct target of UM171 and its mechanism of action, our results reveal how the cooperativity offered by a large dimeric CRL E3 family can be leveraged by a small molecule degrader and establish for the first time a dual molecular glue paradigm.

18.
Chemistry ; 19(35): 11553-7, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23881785

RESUMEN

Copper is key: A concise route to isoquinolin-1(2H)-ones from simple and readily available starting materials is provided by an efficient copper-catalyzed annulation of ketones with 2-halobenzamides. The method is applicable to a wide range of ketones containing different functional groups furnishing the products in moderate to excellent yields.


Asunto(s)
Benzamidas/química , Cobre/química , Isoquinolinas/síntesis química , Cetonas/química , Catálisis , Isoquinolinas/química , Estructura Molecular , Estereoisomerismo
19.
Chemistry ; 19(6): 1914-8, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23281117

RESUMEN

Anything between ureas? Spiro[isoxazolidine-3,3'-oxindole]s have been constructed by employing methyleneindolinones and nitrones as the starting materials through [3+2] annulation catalyzed by a bisthiourea. Products with three contiguous stereocenters, including one spiroquaternary stereocenter, are obtained in good yields with excellent enantio- and diastereoselectivity. The bisthiourea catalyst acts as a multiple-hydrogen-bond donor to simultaneously activate both substrates.


Asunto(s)
Indoles/química , Indoles/síntesis química , Compuestos de Espiro/química , Compuestos de Espiro/síntesis química , Tiourea/química , Catálisis , Ciclización , Enlace de Hidrógeno , Estructura Molecular , Oxindoles , Estereoisomerismo
20.
Chemistry ; 19(30): 9754-9, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23832817

RESUMEN

Carbon-carbon bond formation: A highly efficient method for the oxo-hetero-Diels-Alder reaction of 2-oxoindolin-3-ylidenes based on chiral calcium phosphate is described. In general, adducts were obtained with high yields and excellent diastereo- and enantioselectivities (up to 96 % yield, >99:1 endo/exo, >99 % ee; see scheme, Boc = tert-butoxycarbonyl).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA