Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 3): 134300, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097069

RESUMEN

Extensive bodies of research are dedicated to the study of seed aging with a particular focus on the roles of reactive oxygen species (ROS), and the ensuing oxidative damage during storage, as a primary cause of seed vigor decreasing. ROS diffuse to the nucleus and damage the telomeres, resulting in a loss of genetic integrity. Protection of telomeres 1 (POT1) is a telomeric protein that binds to the telomere region, and plays an essential role in maintaining genomic stability in plants. In this study, there were totally four MsPOT1 genes obtained from alfalfa genome. Expression analysis of four MsPOT1 genes in germinated seed presented the different expressions. Four MsPOT1 genes displayed high expression levels at the early stage of seed germination, Among the four POT1 genes, it was found that MS. gene040108 was significantly up-regulated in the early germination stage of CK seeds, but down-regulated in aged seeds. RT-qPCR assays and RNA-seq data revealed that MsPOT1-X gene was significantly induced by seed aging treatment. Transgenic seeds overexpressing MsPOT1-X gene in Arabidopsis thaliana and Medicago trunctula exhibited enhanced seed vigor, telomere length, telomerase activity associated with reduced H2O2 content. These results would provide a new way to understand aging stress-responsive MsPOT1 genes for genetic improvement of seed vigor. Although a key gene regulating seed vigor was identified in this study, the specific mechanism of MsPOT1-X gene regulating seed vigor needs to be further explored.

2.
Int J Biol Macromol ; 277(Pt 4): 134388, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116978

RESUMEN

Numerous studies have investigated seed aging, with a particular emphasis on the involvement of reactive oxygen species. Reactive oxygen species diffuse into the nucleus and damage telomeres, resulting in loss of genetic integrity. Telomerase reverse transcriptase (TERT) plays an essential role in maintaining plant genomic stability. Genome-wide analyses of TERT genes in alfalfa (Medicago sativa) have not yet been conducted, leaving a gap in our understanding of the mechanisms underlying seed aging associated with TERT genes. In this study, four MsTERT genes were identified in the alfalfa genome. The expression profiles of the four MsTERT genes during seed germination indicated that MS. gene79077 was significantly upregulated by seed aging. Transgenic seeds overexpressing MS. gene79077 in Arabidopsis exhibited enhanced tolerance to seed aging by reducing the levels of H2O2 and increasing telomere length and telomerase activity. Furthermore, transcript profiling of aging-treated Arabidopsis wild-type and overexpressing seeds showed an aging response in genes related to glutathione-dependent detoxification and antioxidant defense pathways. These results revealed that MS. gene79077 conferred Arabidopsis seed-aging tolerance via modulation of antioxidant defense and telomere homeostasis. This study provides a new way to understand stress-responsive MsTERT genes for the potential genetic improvement of seed vigor.

3.
Plants (Basel) ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38592838

RESUMEN

Smooth bromegrass (Bromus inermis) is a perennial, high-quality forage grass. However, its seed yield is influenced by agronomic practices, climatic conditions, and the growing year. The rapid and effective prediction of seed yield can assist growers in making informed production decisions and reducing agricultural risks. Our field trial design followed a completely randomized block design with four blocks and three nitrogen levels (0, 100, and 200 kg·N·ha-1) during 2022 and 2023. Data on the remote vegetation index (RVI), the normalized difference vegetation index (NDVI), the leaf nitrogen content (LNC), and the leaf area index (LAI) were collected at heading, anthesis, and milk stages. Multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) regression models were utilized to predict seed yield. In 2022, the results indicated that nitrogen application provided a sufficiently large range of variation of seed yield (ranging from 45.79 to 379.45 kg ha⁻¹). Correlation analysis showed that the indices of the RVI, the NDVI, the LNC, and the LAI in 2022 presented significant positive correlation with seed yield, and the highest correlation coefficient was observed at the heading stage. The data from 2022 were utilized to formulate a predictive model for seed yield. The results suggested that utilizing data from the heading stage produced the best prediction performance. SVM and RF outperformed MLR in prediction, with RF demonstrating the highest performance (R2 = 0.75, RMSE = 51.93 kg ha-1, MAE = 29.43 kg ha-1, and MAPE = 0.17). Notably, the accuracy of predicting seed yield for the year 2023 using this model had decreased. Feature importance analysis of the RF model revealed that LNC was a crucial indicator for predicting smooth bromegrass seed yield. Further studies with an expanded dataset and integration of weather data are needed to improve the accuracy and generalizability of the model and adaptability for the growing year.

4.
Plant Physiol Biochem ; 213: 108868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917738

RESUMEN

The chloroplast biogenesis occurs in cotyledon during alfalfa seed germination before true leaf formation, and is extremely important for the followed plant development and growth. In this study, we conducted a simulation of alfalfa seed germination in the soil by using tin foil and focused on 10 pivotal time points of chloroplast biogenesis in cotyledons before and after light exposure, which showed significant differences in multispectral images, and covered the whole process of chloroplast biogenesis from proplastid, etioplast to mature chloroplast. We revealed three phases that referred to the programmed involvements of photosynthesis promotion, ultrastructure maturity, transcriptomic expression, and protein complex construction, and observed distinct transcriptional expressions of genes from nuclear and chloroplast genomes. In phase I at dark germination before light exposure, chloroplast-encoded genes showed up-regulated expressions together with the importation of chloroplast proteins. In phase II for the first day after light exposure, nuclear-encoded genes' expressions were initiated at 2 h after light exposure (E2h), followed by swift assembly of chloroplast thylakoid membrane protein complexes, and roaring Fv/Fm and contents of chlorophyll a, chlorophyll b and carotenoid. The initiation at E2h was pronounced by the observation of gradual accumulation of single lamella, and facilitated the formation of granum stacks (thylakoid) at E8h in phase II. In phase III from the second day after light exposure, chloroplast became gradually complete with the fully established photosynthetic capacity. Altogether, our results layed a theoretical foundation for enhancing potential photosynthetic efficiency in alfalfa and related species.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Germinación , Medicago sativa , Fotosíntesis , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crecimiento & desarrollo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
5.
Plant Physiol Biochem ; 214: 108890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950462

RESUMEN

Drought stress affects plant photosynthesis, leading to a reduction in the quality and yield of crop production. Non-foliar organs play a complementary role in photosynthesis during plant growth and development and are important sources of energy. However, there are limited studies on the performance of non-foliar organs under drought stress. The photosynthetic-responsive differences of oat spikelet organs (glumes, lemmas and paleas) and flag leaves to drought stress during the grain-filling stage were examined. Under drought stress, photosynthetic performance of glume is more stable. Intercellular CO2 concentration (Ci), chlorophyll b, maximum photochemical efficiency of photosystem II. (Fv/Fm), and electron transport rate (ETR) were significantly higher in the glume compared to the flag leaf. The transcriptome data revealed that stable expression of the RCCR gene under drought stress was the main reason for maintaining higher chlorophyll content in the glume. Additionally, no differential expression genes (DEGs) related to Photosystem Ⅰ (PSI) reaction centers were found, and drought stress primarily affects the Photosystem II (PSII) reaction center. In spikelets, the CP43 and CP47 subunits of PSII and the AtpB subunit of ATP synthase were increased on the thylakoid membrane, contributing to photosynthetic stabilisation of spikelets as a means of supplementing the limited photosynthesis of the leaves under drought stress. The results enhanced understanding of the photosynthetic performance of oat spikelet during the grain-filling stage, and also provided an important basis on improving the photosynthetic capacity of non-foliar organs for the selection and breeding new oat varieties with high yield and better drought resistance.


Asunto(s)
Avena , Sequías , Fotosíntesis , Complejo de Proteína del Fotosistema II , Fotosíntesis/fisiología , Avena/genética , Avena/metabolismo , Avena/crecimiento & desarrollo , Avena/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema I/metabolismo , Grano Comestible/fisiología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA