Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 73(1): 263-274, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34570887

RESUMEN

Most plant species develop stress symptoms when exposed to high ammonium (NH4+) concentrations. The root is the first organ in contact with high NH4+ and therefore the first barrier to cope with ammonium stress. In this work, we focused on root adaptation to ammonium nutrition in the model plant Brachypodium distachyon. Proteome analysis revealed changes associated with primary metabolism, cell wall remodelling, and redox homeostasis. In addition, it showed a strong induction of proteins related to methionine (Met) metabolism and phytosiderophore (PS) synthesis in ammonium-fed plants. In agreement with this, we show how ammonium nutrition impacts Met/S-adenosyl-Met and PS metabolic pathways together with increasing root iron content. Nevertheless, ammonium-fed plants displayed higher sensitivity to iron deficiency, suggesting that ammonium nutrition triggers impaired iron utilization and root to shoot transport, which entailed an induction in iron-related responses. Overall, this work demonstrates the importance of iron homeostasis during ammonium nutrition and paves a new way to better understand and improve ammonium use efficiency and tolerance.


Asunto(s)
Compuestos de Amonio , Brachypodium , Deficiencias de Hierro , Homeostasis , Hierro , Raíces de Plantas
2.
New Phytol ; 229(2): 1021-1035, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901916

RESUMEN

Although ammonium (NH4+ ) is a key intermediate of plant nitrogen metabolism, high concentrations of NH4+ in the soil provoke physiological disorders that lead to the development of stress symptoms. Ammonium nutrition was shown to induce the accumulation of glucosinolates (GSLs) in leaves of different Brassicaceae species. To further understand the link between ammonium nutrition and GSLs, we analysed the ammonium stress response of Arabidopsis mutants impaired in GSL metabolic pathway. We showed that the MYB28 and MYB29 double mutant (myb28myb29), which is almost deprived of aliphatic GSLs, is highly hypersensitive to ammonium nutrition. Moreover, we evidenced that the stress symptoms developed were not a consequence of the lack of aliphatic GSLs. Transcriptomic analysis highlighted the induction of an iron (Fe) deficiency response in myb28myb29 under ammonium nutrition. Consistently, ammonium-grown myb28myb29 plants showed altered Fe accumulation and homeostasis. Interestingly, we showed overall that growing Arabidopsis with increased Fe availability relieved ammonium stress symptoms and that this was associated with MYB28 and MYB29 expression. Taken together, our data indicated that the control of Fe homeostasis was crucial for the Arabidopsis response to ammonium nutrition and evidenced that MYB28 and MYB29 play a role in this control.


Asunto(s)
Compuestos de Amonio , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosinolatos , Histona Acetiltransferasas/metabolismo , Homeostasis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA