Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomacromolecules ; 19(9): 3840-3852, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30095907

RESUMEN

A novel, multifunctional hydrogel that exhibits a unique set of properties for the effective treatment of pancreatic cancer (PC) is presented. The material is composed of a pentablock terpolypeptide of the type PLys- b-(PHIS- co-PBLG)-PLys- b-(PHIS- co-PBLG)- b-PLys, which is a noncytotoxic polypeptide. It can be implanted via the least invasive route and selectively delivers gemcitabine to efficiently treat PC. Simply mixing the novel terpolypeptide with an aqueous solution of gemcitabine within a syringe results in the facile formation of a hydrogel that has the ability to become liquid under the shear rate of the plunger. Upon injection in the vicinity of cancer tissue, it immediately reforms into a hydrogel due to the unique combination of its macromolecular architecture and secondary structure. Because of its pH responsiveness, the hydrogel only melts close to PC; thus, the drug can be delivered directionally toward the cancerous rather than healthy tissues in a targeted, controlled, and sustained manner. The efficacy of the hydrogel was tested in vivo on human to mouse xenografts using the drug gemcitabine. It was found that the efficacy of the hydrogel loaded with only 40% of the drug delivered in one dose was equal to or slightly better than the peritumoral injection of 100% of the free drug delivered in two doses, the typical chemotherapy used in clinics so far. This result suggests that the hydrogel can direct the delivery of the encapsulated drug effectively in the tumor tissue. Enzymes lead to its biodegradation, avoiding removal by resection of the polypeptidic carrier after cargo delivery. The unique properties of the hydrogel formed can be predetermined through its molecular characteristics, rendering it a promising modular material for many biological applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Desoxicitidina/análogos & derivados , Liberación de Fármacos , Hidrogeles/química , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/uso terapéutico , Femenino , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos NOD , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/química , Gemcitabina
2.
J Mater Sci Mater Med ; 29(5): 59, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29730855

RESUMEN

Chitosan/Gelatin (CS:Gel) scaffolds were fabricated by chemical crosslinking with glutaraldehyde or genipin by freeze drying. Both crosslinked CS:Gel scaffold types with a mass ratio of 40:60% form a gel-like structure with interconnected pores. Dynamic rheological measurements provided similar values for the storage modulus and the loss modulus of the CS:Gel scaffolds when crosslinked with the same concentration of glutaraldehyde vs. genipin. Compared to genipin, the glutaraldehyde-crosslinked scaffolds supported strong adhesion and infiltration of pre-osteoblasts within the pores as well as survival and proliferation of both MC3T3-E1 pre-osteoblastic cells after 7 days in culture, and human bone marrow mesenchymal stem cells (BM-MSCs) after 14 days in culture. The levels of collagen secreted into the extracellular matrix by the pre-osteoblasts cultured for 4 and 7 days on the CS:Gel scaffolds, significantly increased when compared to the tissue culture polystyrene (TCPS) control surface. Human BM-MSCs attached and infiltrated within the pores of the CS:Gel scaffolds allowing for a significant increase of the osteogenic gene expression of RUNX2, ALP, and OSC. Histological data following implantation of a CS:Gel scaffold into a mouse femur demonstrated that the scaffolds support the formation of extracellular matrix, while fibroblasts surrounding the porous scaffold produce collagen with minimal inflammatory reaction. These results show the potential of CS:Gel scaffolds to support new tissue formation and thus provide a promising strategy for bone tissue engineering.


Asunto(s)
Regeneración Ósea , Quitosano/química , Gelatina/química , Osteoblastos/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Osteoblastos/fisiología , Osteogénesis/fisiología , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
3.
Soft Matter ; 11(42): 8296-312, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26356800

RESUMEN

We present extensive experimental and theoretical investigations on the structure, phase behavior, dynamics and rheology of model soft-hard colloidal mixtures realized with large, multiarm star polymers as the soft component and smaller, compact stars as the hard one. The number and length of the arms in star polymers control their softness, whereas the size ratio, the overall density and the composition are additional parameters varied for the mixtures. A coarse-grained theoretical strategy is employed to predict the structure of the systems as well as their ergodicity properties on the basis of mode coupling theory, for comparison with rheological measurements on the samples. We discovered that dynamically arrested star-polymer solutions recover their ergodicity upon addition of colloidal additives. At the same time the system displays demixing instability, and the binodal of the latter meets the glass line in a way that leads, upon addition of a sufficient amount of colloidal particles, to an arrested phase separation and reentrant solidification. We present evidence for a subsequent solid-to-solid transition well within the region of arrested phase separation, attributed to a hard-sphere-mixture type of glass, due to osmotic shrinkage of the stars at high colloidal particle concentrations. We systematically investigated the interplay of star functionality and size ratio with glass melting and demixing, and rationalized our findings by the depletion of the big stars due to the smaller colloids. This new depletion potential in which, contrary to the classic colloid-polymer case, the hard component depletes the soft one, has unique and novel characteristics and allows the calculation of phase diagrams for such mixtures. This work covers a broad range of soft-hard colloidal mixture compositions in which the soft component exceeds the hard one in size and provides general guidelines for controlling the properties of such complex mixtures.

4.
Phys Rev Lett ; 111(20): 208301, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24289711

RESUMEN

By employing rheological experiments, mode coupling theory, and computer simulations based on realistic coarse-grained models, we investigate the effects of small, hard colloids on the glassy states formed by large, soft colloids. Multiarm star polymers mimic hard and soft colloids by appropriately varying the number and size of their arms. The addition of hard colloids leads, depending on their concentration, to either melting of the soft glass or the emergence of two distinct glassy states. We explain our findings by depletion of the colloids adjacent to the stars, which leads to an arrested phase separation when the repulsive glass line meets the demixing binodal. The parameter-free agreement between experiment, theory, and simulations suggests the generic nature of our results and opens the route for designing soft-hard colloidal composites with tunable rheology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA