Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Internet Res ; 24(5): e37523, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35576572

RESUMEN

BACKGROUND: Experts agree that the promotion of (digital) health literacy should be an integral part of the school curriculum. However, promoting (digital) health literacy within the German school system is difficult because (digital) health education is not a mandatory school subject in all the German states. Therefore, experts suggest that (digital) health literacy could be addressed as part of the mandatory framework for digital education and digital literacy in schools developed by the German Conference on Education Ministries and Cultural Affairs (Kultusministerkonferenz). OBJECTIVE: The goal of this study was to evaluate a newly developed e-learning course that was designed to improve (digital) health literacy in school-age children and concurrently to teach skills specified in the mandatory framework for digital education and digital literacy in schools. It was hypothesized that participants' health literacy and digital health literacy levels would be higher after completing the e-learning course than they were before doing the course. Furthermore, it was hypothesized that after completing the e-learning course, participants' subjective and objective knowledge in the domain of (digital) health literacy would be higher than it was before doing the course. METHODS: The pre-post measurement study was conducted online. After participants (N=323) gave their informed consent to participate in the study, they provided demographic information and answered all measures (premeasurement). Following this, participants had 7 days to complete the e-learning course. After finishing the e-learning course, participants answered all the measures again (postmeasurement). RESULTS: To test the hypotheses, Bayesian paired samples t tests (1-sided) were conducted. After completing the e-learning course, participants showed higher health literacy levels. Specifically, they showed higher competency levels in the domains of theoretical knowledge (Bayes factor [BF]-0=676,000; δ=-0.316), practical knowledge (BF-0=92,300; δ=-0.294), critical thinking (BF-0=7.42e+13; δ=-0.482), self-awareness (BF-0=11,500,000; δ=-0.345), and citizenship (BF-0=266,000; δ=-0.306). Furthermore, participants achieved higher digital health literacy levels. Specifically, they achieved higher competency levels in the domains of information searching (BF-0=2.339; δ=-0.135), evaluating reliability (BF-0=2.03e+11; δ=-0.434), and determining relevance (BF-0=316,000; δ=-0.308). Moreover, participants demonstrated higher subjective (BF-0=3.58e+82; δ=-1.515) and objective knowledge (BF-0=3.82e+97; δ=-1.758) in the domain of (digital) health literacy. CONCLUSIONS: The newly designed e-learning course provides an easy way for schools and teachers from all German states to integrate (digital) health literacy education into their school curriculums and lessons. The evaluated course is especially attractive because it was designed to improve (digital) health literacy and at the same time to teach skills specified in the mandatory framework for digital education and digital literacy in schools developed by the German Conference on Education Ministries and Cultural Affairs (Kultusministerkonferenz).


Asunto(s)
Instrucción por Computador , Alfabetización en Salud , Teorema de Bayes , Niño , Curriculum , Humanos , Reproducibilidad de los Resultados , Instituciones Académicas
2.
J Hepatol ; 70(6): 1192-1202, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30711403

RESUMEN

BACKGROUND & AIMS: The mammalian circadian clock controls various aspects of liver metabolism and integrates nutritional signals. Recently, we described Hedgehog (Hh) signaling as a novel regulator of liver lipid metabolism. Herein, we investigated crosstalk between hepatic Hh signaling and circadian rhythm. METHODS: Diurnal rhythms of Hh signaling were investigated in liver and hepatocytes from mice with ablation of Smoothened (SAC-KO) and crossbreeds with PER2::LUC reporter mice. By using genome-wide screening, qPCR, immunostaining, ELISA and RNAi experiments in vitro we identified relevant transcriptional regulatory steps. Shotgun lipidomics and metabolic cages were used for analysis of metabolic alterations and behavior. RESULTS: Hh signaling showed diurnal oscillations in liver and hepatocytes in vitro. Correspondingly, the level of Indian Hh, oscillated in serum. Depletion of the clock gene Bmal1 in hepatocytes resulted in significant alterations in the expression of Hh genes. Conversely, SAC-KO mice showed altered expression of clock genes, confirmed by RNAi against Gli1 and Gli3. Genome-wide screening revealed that SAC-KO hepatocytes showed time-dependent alterations in various genes, particularly those associated with lipid metabolism. The clock/hedgehog module further plays a role in rhythmicity of steatosis, and in the response of the liver to a high-fat diet or to differently timed starvation. CONCLUSIONS: For the first time, Hh signaling in hepatocytes was found to be time-of-day dependent and to feed back on the circadian clock. Our findings suggest an integrative role of Hh signaling, mediated mainly by GLI factors, in maintaining homeostasis of hepatic lipid metabolism by balancing the circadian clock. LAY SUMMARY: The results of our investigation show for the first time that the Hh signaling in hepatocytes is time-of-day dependent, leading to differences not only in transcript levels but also in the amount of Hh ligands in peripheral blood. Conversely, Hh signaling is able to feed back to the circadian clock.


Asunto(s)
Relojes Circadianos/fisiología , Hígado Graso/etiología , Proteínas Hedgehog/fisiología , Animales , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/fisiología , Transducción de Señal/fisiología , Receptor Smoothened/fisiología , Proteína con Dedos de Zinc GLI1/fisiología , Proteína Gli3 con Dedos de Zinc/fisiología
3.
Skin Pharmacol Physiol ; 32(4): 192-200, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31096247

RESUMEN

BACKGROUND: Atopic diseases constitute a major health challenge for industrialized countries, and elevated levels of interleukin 4 (IL-4) frequently characterize these disorders. Previous in vitroanalyses have indicated that IL-4 strongly upregulates the expression of IL-4-sensitive genes in human monocytes. OBJECTIVE: To explore whether similar expression alterations may contribute to the pathomechanisms of atopic diseases in vivo we carried out a small-scale case-control clinical study (n = 43), in which we quantified the plasma levels of IgE and IL-4 as well as the expression of selected IL-4-sensitive genes in blood leukocytes. METHODS: 34 allergic patients suffering from allergic rhinitis (n = 11), atopic eczema (n = 11) and allergic asthma (n = 12) as well as 9 healthy control individuals were recruited. IgE and IL-4 plasma levels were determined by ELISA, and the expression of selected IL-4-sensitive gene products in blood leukocytes was quantified by qRT-PCR. In addition, the fatty acid oxygenase activity of isolated monocytes was measured by RP-HPLC analysis of the arachidonic acid oxygenation products (ex vivo activity assays). RESULTS: We found that plasma levels of IgE and IL-4 were significantly elevated in atopic patients but the degree of elevation was not sufficient to upregulate the expression of the selected IL-4-sensitive genes in circulating leukocytes. Moreover, the arachidonic acid oxygenase activity of blood monocytes was not significantly altered in atopic patients. CONCLUSION: Our data suggest that the IL-4 plasma levels of atopic patients are not high enough to impact the expression of IL-4-sensitive genes.


Asunto(s)
Hipersensibilidad Inmediata/sangre , Hipersensibilidad Inmediata/genética , Inmunoglobulina E/biosíntesis , Interleucina-4/biosíntesis , Leucocitos/fisiología , Adulto , Asma/sangre , Asma/genética , Estudios de Casos y Controles , Dermatitis Atópica/sangre , Dermatitis Atópica/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxigenasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Rinitis Alérgica/sangre , Rinitis Alérgica/genética , Regulación hacia Arriba
4.
Metabolites ; 11(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34677413

RESUMEN

Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5-/- mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5-/- animals tested previously in similar experimental setups.

5.
Antioxid Redox Signal ; 32(1): 1-17, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642348

RESUMEN

Aims: Most mammalian genomes involve several genes encoding for functionally distinct arachidonate lipoxygenase (ALOX isoforms). Proinflammatory leukotrienes are formed via the ALOX5 pathway, but 12/15-lipoxygenating ALOX isoforms have been implicated in the biosynthesis of pro-resolving mediators. In vitro mutagenesis of the triad determinants abolished the leukotriene synthesizing activity of ALOX5, but the biological consequences of these alterations have not been studied. To fill this gap, we created Alox5 knock-in mice, which express the 12/15-lipoxygenating Phe359Trp + Ala424Ile + Asn425Met Alox5 triple mutant and characterized its phenotypic alterations. Results: The mouse Alox5 triple mutant functions as arachidonic acid 15-lipoxygenating enzyme, which also forms 12S-hydroxy and 8S-hydroxy arachidonic acid. In contrast to the wild-type enzyme, the triple mutant effectively oxygenates linoleic acid to 13S-hydroxy linoleic acid (13S-HODE), which functions as activating ligand of the type-2 nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). Knock-in mice expressing the mutant enzyme are viable, fertile, and develop normally. The mice cannot synthesize proinflammatory leukotrienes but show significantly attenuated plasma levels of lipolytic endocannabinoids. When aging, the animals gained significantly more body weight, which may be related to the fivefold higher levels of 13-HODE in the adipose tissue. Innovation: These data indicate for the first time that in vivo mutagenesis of the triad determinants of mouse Alox5 abolished the biosynthetic capacity of the enzyme for proinflammatory leukotrienes and altered the catalytic properties of the protein favoring the formation of 13-HODE. Conclusion:In vivo triple mutation of the mouse Alox5 gene impacts the body weight homeostasis of aging mice via augmented formation of the activating PPARγ ligand 13-HODE.


Asunto(s)
Envejecimiento/genética , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Mutación , Envejecimiento/metabolismo , Alanina/genética , Animales , Asparagina/genética , Peso Corporal , Femenino , Técnicas de Sustitución del Gen , Leucotrienos/metabolismo , Ácido Linoleico/metabolismo , Masculino , Ratones , PPAR gamma , Fenilalanina/genética
6.
Front Physiol ; 9: 1180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271348

RESUMEN

Organisms adapt their metabolism and draw on reserves as a consequence of food deprivation. The central role of the liver in starvation response is to coordinate a sufficient energy supply for the entire organism, which has frequently been investigated. However, knowledge of how circadian rhythms impact on and alter this response is scarce. Therefore, we investigated the influence of different timings of starvation on global hepatic gene expression. Mice (n = 3 each) were challenged with 24-h food deprivation started in the morning or evening, coupled with refeeding for different lengths and compared with ad libitum fed control groups. Alterations in hepatocyte gene expression were quantified using microarrays and confirmed or complemented with qPCR, especially for lowly detectable transcription factors. Analysis was performed using self-organizing maps (SOMs), which bases on clustering genes with similar expression profiles. This provides an intuitive overview of expression trends and allows easier global comparisons between complex conditions. Transcriptome analysis revealed a strong circadian-driven response to fasting based on the diurnal expression of transcription factors (e.g., Ppara, Pparg). Starvation initiated in the morning produced known metabolic adaptations in the liver; e.g., switching from glucose storage to consumption and gluconeogenesis. However, starvation initiated in the evening produced a different expression signature that was controlled by yet unknown regulatory mechanisms. For example, the expression of genes involved in gluconeogenesis decreased and fatty acid and cholesterol synthesis genes were induced. The differential regulation after morning and evening starvation were also reflected at the lipidome level. The accumulation of hepatocellular storage lipids (triacylglycerides, cholesteryl esters) was significantly higher after the initiation of starvation in the morning compared to the evening. Concerning refeeding, the gene expression pattern after a 12 h refeeding period largely resembled that of the corresponding starvation state but approached the ad libitum control state after refeeding for 21 h. Some components of these regulatory circuits are discussed. Collectively, these data illustrate a highly time-dependent starvation response in the liver and suggest that a circadian influence cannot be neglected when starvation is the focus of research or medicine, e.g., in the case of treating victims of sudden starvation events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA