Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(23): 236001, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32603165

RESUMEN

Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.

2.
Nature ; 466(7302): 56-61, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596013

RESUMEN

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10(18) W cm(-2), 1.5-0.6 nm, approximately 10(5) X-ray photons per A(2)). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

3.
J Phys Chem A ; 116(40): 9878-87, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22970732

RESUMEN

We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)(3)](2+) in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate, we observed the interplay between intramolecular dynamics and the intermolecular caging solvent response with better than 100 ps time resolution. On this time scale, the initial ultrafast spin transition and the associated intramolecular geometric structure changes are long completed, as is the solvent heating due to the initial energy dissipation from the excited HS molecule. Combining information from X-ray emission spectroscopy and scattering, the excitation fraction as well as the temperature and density changes of the solvent can be closely followed on the subnanosecond time scale of the HS lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work.


Asunto(s)
Compuestos Férricos/química , Teoría Cuántica , Termodinámica , Cinética , Procesos Fotoquímicos , Espectrometría por Rayos X , Factores de Tiempo , Agua/química , Difracción de Rayos X
4.
Phys Rev Lett ; 107(23): 233001, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22182083

RESUMEN

We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s↔2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies.

5.
Opt Express ; 18(17): 17620-30, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20721148

RESUMEN

The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.


Asunto(s)
Electrones , Rayos Láser , Sincrotrones , Diseño de Equipo , Fibras Ópticas , Factores de Tiempo , Rayos X
6.
Phys Rev Lett ; 105(8): 083004, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20868096

RESUMEN

The Linac Coherent Light Source free electron laser is a source of high brightness x rays, 2×10(11) photons in a ∼5 fs pulse, that can be focused to produce double core vacancies through rapid sequential ionization. This enables double core vacancy Auger electron spectroscopy, an entirely new way to study femtosecond chemical dynamics with Auger electrons that probe the local valence structure of molecules near a specific atomic core. Using 1.1 keV photons for sequential x-ray ionization of impulsively aligned molecular nitrogen, we observed a rich single-site double core vacancy Auger electron spectrum near 413 eV, in good agreement with ab initio calculations, and we measured the corresponding Auger electron angle dependence in the molecular frame.


Asunto(s)
Electrones , Fenómenos Físicos , Luz , Nitrógeno/química , Teoría Cuántica , Análisis Espectral , Factores de Tiempo
7.
Science ; 367(6474): 179-182, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31919219

RESUMEN

Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.

8.
Nat Commun ; 7: 11652, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27212390

RESUMEN

New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.

9.
Faraday Discuss ; 171: 169-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25415532

RESUMEN

We have studied the photoinduced low spin (LS) to high spin (HS) conversion of aqueous Fe(bpy)3 with pulse-limited time resolution. In a combined setup permitting simultaneous X-ray diffuse scattering (XDS) and spectroscopic measurements at a MHz repetition rate we have unraveled the interplay between intramolecular dynamics and the intermolecular caging solvent response with 100 ps time resolution. On this time scale the ultrafast spin transition including intramolecular geometric structure changes as well as the concomitant bulk solvent heating process due to energy dissipation from the excited HS molecule are long completed. The heating is nevertheless observed to further increase due to the excess energy between HS and LS states released on a subnanosecond time scale. The analysis of the spectroscopic data allows precise determination of the excited population which efficiently reduces the number of free parameters in the XDS analysis, and both combined permit extraction of information about the structural dynamics of the first solvation shell.

10.
Opt Lett ; 32(7): 868-70, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17339964

RESUMEN

We report the compression of intense, carrier-envelope phase stable mid-IR pulses down to few-cycle duration using an optical filament. A filament in xenon gas is formed by using self-phase stabilized 330 microJ 55 fs pulses at 2 microm produced via difference-frequency generation in a Ti:sapphire-pumped optical parametric amplifier. The ultrabroadband 2 microm carrier-wavelength output is self-compressed below 3 optical cycles and has a 270 microJ pulse energy. The self-locked phase offset of the 2 microm difference-frequency field is preserved after filamentation. This is to our knowledge the first experimental realization of pulse compression in optical filaments at mid-IR wavelengths (lambda>0.8 microm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA