Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.237
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768006

RESUMEN

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Asunto(s)
COVID-19 , Gripe Humana , Neoplasias , Animales , Humanos , Gripe Humana/patología , Ratones , Microglía/patología , Vaina de Mielina , Neoplasias/patología , SARS-CoV-2
2.
N Engl J Med ; 389(14): 1273-1285, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37632466

RESUMEN

BACKGROUND: Five modifiable risk factors are associated with cardiovascular disease and death from any cause. Studies using individual-level data to evaluate the regional and sex-specific prevalence of the risk factors and their effect on these outcomes are lacking. METHODS: We pooled and harmonized individual-level data from 112 cohort studies conducted in 34 countries and 8 geographic regions participating in the Global Cardiovascular Risk Consortium. We examined associations between the risk factors (body-mass index, systolic blood pressure, non-high-density lipoprotein cholesterol, current smoking, and diabetes) and incident cardiovascular disease and death from any cause using Cox regression analyses, stratified according to geographic region, age, and sex. Population-attributable fractions were estimated for the 10-year incidence of cardiovascular disease and 10-year all-cause mortality. RESULTS: Among 1,518,028 participants (54.1% of whom were women) with a median age of 54.4 years, regional variations in the prevalence of the five modifiable risk factors were noted. Incident cardiovascular disease occurred in 80,596 participants during a median follow-up of 7.3 years (maximum, 47.3), and 177,369 participants died during a median follow-up of 8.7 years (maximum, 47.6). For all five risk factors combined, the aggregate global population-attributable fraction of the 10-year incidence of cardiovascular disease was 57.2% (95% confidence interval [CI], 52.4 to 62.1) among women and 52.6% (95% CI, 49.0 to 56.1) among men, and the corresponding values for 10-year all-cause mortality were 22.2% (95% CI, 16.8 to 27.5) and 19.1% (95% CI, 14.6 to 23.6). CONCLUSIONS: Harmonized individual-level data from a global cohort showed that 57.2% and 52.6% of cases of incident cardiovascular disease among women and men, respectively, and 22.2% and 19.1% of deaths from any cause among women and men, respectively, may be attributable to five modifiable risk factors. (Funded by the German Center for Cardiovascular Research (DZHK); ClinicalTrials.gov number, NCT05466825.).


Asunto(s)
Enfermedades Cardiovasculares , Factores de Riesgo de Enfermedad Cardiaca , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/mortalidad , Diabetes Mellitus , Factores de Riesgo , Fumar/efectos adversos , Internacionalidad
3.
Proc Natl Acad Sci U S A ; 120(2): e2212456120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595705

RESUMEN

Antifreeze proteins (AFPs) bind ice to reduce freezing temperatures and arrest ice crystal ripening, making AFPs essential for the survival of many organisms in ice-laden environments and attractive as biocompatible antifreezes in many applications. While their activity was identified over 50 years ago, the physical mechanisms through which they function are still debated because experimental insights at the molecular scale remain elusive. Here, we introduce subzero nanoscopy by the design and incorporation of a freezing stage on a commercial super-resolution setup to resolve the interfacial dynamics of single AFPs with ice crystal surfaces. Using this method, we demonstrate irreversible binding and immobilization (i.e., pinning) of individual proteins to the ice/water interface. Surprisingly, pinning is lost and adsorption becomes reversible when freezing point depression activity, but not ice recrystallization inhibition, is eliminated by a single mutation in the ice-binding site of the AFP. Our results provide direct experimental evidence for the adsorption-inhibition paradigm, pivotal to all theoretical descriptions of freezing point depression activity, but also reveal that reversible binding to ice must be accounted for in an all-inclusive model for AFP activity. These mechanistic insights into the relation between interfacial interactions and activity further our understanding and may serve as leading principles in the future design of highly potent, biocompatible antifreezes with tunable affinity.


Asunto(s)
Proteínas Anticongelantes , alfa-Fetoproteínas , Cristalización , Proteínas Anticongelantes/química , Congelación , Crioprotectores
4.
Lancet ; 404(10460): 1347-1364, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368843

RESUMEN

Hypothyroidism, the deficiency of thyroid hormone, is a common condition worldwide. It affects almost all body systems and has a wide variety of clinical presentations from being asymptomatic to, in rare cases, life threatening. The classic symptoms of hypothyroidism include fatigue, lethargy, weight gain, and cold intolerance; however, these symptoms are non-specific and the diagnosis is typically made on biochemical grounds through serum thyroid function tests. The most common cause of hypothyroidism is chronic autoimmune thyroiditis (Hashimoto's thyroiditis), although other causes, including drugs (such as amiodarone, lithium, and immune checkpoint inhibitors), radioactive-iodine treatment, and thyroid surgery, are frequent. Historically, severe iodine deficiency was the most common cause. Reference ranges for thyroid function tests are based on fixed percentiles of the population distribution, but there is increasing awareness of the need for more individualised reference intervals based on key factors such as age, sex, and special circumstances such as pregnancy. Levothyroxine monotherapy is the standard treatment for hypothyroidism; it is safe and inexpensive, restores thyroid function tests to within the reference range, and improves symptoms in the majority of patients. However, 10% of patients have persistent symptoms of ill health despite normalisation of thyroid function tests biochemically and a substantial proportion of patients on levothyroxine have thyroid-stimulating hormone concentrations outside the reference range. Ongoing symptoms despite levothyroxine treatment has led to some patients using liothyronine or desiccated thyroid extract. Taken together, these factors have led to intense debate around the treatment thresholds and treatment strategies for hypothyroidism. In this Seminar, we review the epidemiology, genetic determinants, causes, and presentation of hypothyroidism; highlight key considerations and controversies in its diagnosis and management; and provide future directions for research.


Asunto(s)
Hipotiroidismo , Pruebas de Función de la Tiroides , Tiroxina , Humanos , Hipotiroidismo/diagnóstico , Hipotiroidismo/tratamiento farmacológico , Tiroxina/uso terapéutico , Tiroxina/sangre , Tirotropina/sangre , Femenino , Embarazo
5.
Plant Physiol ; 196(1): 153-163, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38757896

RESUMEN

Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.


Asunto(s)
Acer , Hojas de la Planta , Tallos de la Planta , Quercus , Microtomografía por Rayos X , Microtomografía por Rayos X/métodos , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Acer/crecimiento & desarrollo , Acer/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Fotosíntesis , Xilema/crecimiento & desarrollo , Xilema/fisiología , Xilema/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Fraxinus/crecimiento & desarrollo , Fraxinus/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Árboles/fisiología , Transporte Biológico , Betulaceae/crecimiento & desarrollo
6.
Mol Psychiatry ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143322

RESUMEN

Protein aggregation in brainstem nuclei is thought to occur in the early stages of Alzheimer's disease (AD), but its specific role in driving prodromal symptoms and disease progression is largely unknown. The dorsal raphe nucleus (DRN) contains a large population of serotonin (5-hydroxytryptamine; 5-HT) neurons that regulate mood, reward-related behavior, and sleep, which are all disrupted in AD. We report here that tau pathology is present in the DRN of individuals 25-80 years old without a known history of dementia, and its prevalence was comparable to the locus coeruleus (LC). By comparison, fewer cases were positive for other pathological proteins including α-synuclein, ß-amyloid, and TDP-43. To evaluate how early tau pathology impacts behavior, we overexpressed human P301L-tau in the DRN of mice and observed depressive-like behaviors and hyperactivity without deficits in spatial memory. Tau pathology was predominantly found in neurons relative to glia and colocalized with a significant proportion of Tph2-expressing neurons in the DRN. 5-HT neurons were also hyperexcitable in P301L-tauDRN mice, and there was an increase in the amplitude of excitatory post-synaptic currents (EPSCs). Moreover, astrocytic density was elevated in the DRN and accompanied by an increase in IL-1α and Frk expression, which suggests increased inflammatory signaling. Additionally, tau pathology was detected in axonal processes in the thalamus, hypothalamus, amygdala, and caudate putamen. A significant proportion of this tau pathology colocalized with the serotonin reuptake transporter (SERT), suggesting that tau may spread in an anterograde manner to regions outside the DRN. Together these results indicate that tau pathology accumulates in the DRN in a subset of individuals over 50 years and may lead to behavioral dysregulation, 5-HT neuronal dysfunction, and activation of local astrocytes which may be prodromal indicators of AD.

7.
Brain ; 147(7): 2459-2470, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608149

RESUMEN

Adaptive coding of reward is the process by which neurons adapt their response to the context of available compensations. Higher rewards lead to a stronger brain response, but the increase of the response depends on the range of available rewards. A steeper increase is observed in a narrow range and a more gradual slope in a wider range. In schizophrenia, adaptive coding appears to be affected in different domains, especially in the reward domain. Here, we tested adaptive coding of reward in a large group of patients with schizophrenia (n = 86) and control subjects (n = 66). We assessed: (i) the association between adaptive coding deficits and symptoms; (ii) the longitudinal stability of deficits (the same task was performed 3 months apart); and (iii) the stability of results between two experimental sites. We used functional MRI and the monetary incentive delay task to assess adaptation of participants to two different reward ranges: a narrow range and a wide range. We used a region-of-interest analysis to evaluate adaptation within striatal and visual regions. Patients and control subjects underwent a full demographic and clinical assessment. We found reduced adaptive coding in patients, with a decreased slope in the narrow reward range with respect to that of control participants, in striatal but not visual regions. This pattern was observed at both research sites. Upon retesting, patients increased their narrow-range slopes, showing improved adaptive coding, whereas control subjects slightly reduced them. At retesting, patients with overly steep slopes in the narrow range also showed higher levels of negative symptoms. Our data confirm deficits in reward adaptation in schizophrenia and reveal an effect of practice in patients, leading to improvement, with steeper slopes upon retesting. However, in some patients, an excessively steep slope may result in poor discriminability of larger rewards, owing to early saturation of the brain response. Together, the loss of precision of reward representation in new (first exposure, underadaptation) and more familiar (retest, overadaptation) situations might contribute to the multiple motivational symptoms in schizophrenia.


Asunto(s)
Apatía , Imagen por Resonancia Magnética , Recompensa , Esquizofrenia , Humanos , Masculino , Femenino , Adulto , Esquizofrenia/fisiopatología , Apatía/fisiología , Persona de Mediana Edad , Psicología del Esquizofrénico , Motivación/fisiología , Adaptación Fisiológica/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adaptación Psicológica/fisiología
8.
Eur Heart J ; 45(12): 1043-1054, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38240386

RESUMEN

BACKGROUND AND AIMS: Recent investigations have suggested an interdependence of lipoprotein(a) [Lp(a)]-related risk for cardiovascular disease with background inflammatory burden. The aim the present analysis was to investigate whether high-sensitive C-reactive protein (hsCRP) modulates the association between Lp(a) and coronary heart disease (CHD) in the general population. METHODS: Data from 71 678 participants from 8 European prospective population-based cohort studies were used (65 661 without/6017 with established CHD at baseline; median follow-up 9.8/13.8 years, respectively). Fine and Gray competing risk-adjusted models were calculated according to accompanying hsCRP concentration (<2 and ≥2 mg/L). RESULTS: Among CHD-free individuals, increased Lp(a) levels were associated with incident CHD irrespective of hsCRP concentration: fully adjusted sub-distribution hazard ratios [sHRs (95% confidence interval)] for the highest vs. lowest fifth of Lp(a) distribution were 1.45 (1.23-1.72) and 1.48 (1.23-1.78) for a hsCRP group of <2 and ≥2 mg/L, respectively, with no interaction found between these two biomarkers on CHD risk (Pinteraction = 0.82). In those with established CHD, similar associations were seen only among individuals with hsCRP ≥ 2 mg/L [1.34 (1.03-1.76)], whereas among participants with a hsCRP concentration <2 mg/L, there was no clear association between Lp(a) and future CHD events [1.29 (0.98-1.71)] (highest vs. lowest fifth, fully adjusted models; Pinteraction = 0.024). CONCLUSIONS: While among CHD-free individuals Lp(a) was significantly associated with incident CHD regardless of hsCRP, in participants with CHD at baseline, Lp(a) was related to recurrent CHD events only in those with residual inflammatory risk. These findings might guide adequate selection of high-risk patients for forthcoming Lp(a)-targeting compounds.


Asunto(s)
Proteína C-Reactiva , Enfermedad Coronaria , Humanos , Proteína C-Reactiva/metabolismo , Estudios Prospectivos , Factores de Riesgo , Lipoproteína(a) , Enfermedad Coronaria/epidemiología , Biomarcadores/metabolismo
9.
J Neurosci ; 43(2): 221-239, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36442999

RESUMEN

Lesion localization is the basis for understanding neurologic disease, which is predicated on neuroanatomical knowledge carefully cataloged from histology and imaging atlases. However, it is often difficult to correlate clinical images of brainstem injury obtained by MRI scans with the details of human brainstem neuroanatomy represented in atlases, which are mostly based on cytoarchitecture using Nissl stain or a single histochemical stain, and usually do not include the cerebellum. Here, we report a high-resolution (200 µm) 7T MRI of a cadaveric male human brainstem and cerebellum paired with detailed, coregistered histology (at 2 µm single-cell resolution) of the immunohistochemically stained cholinergic, serotonergic, and catecholaminergic (dopaminergic, noradrenergic, and adrenergic) neurons, in relationship to each other and to the cerebellum. These immunohistochemical findings provide novel insights into the spatial relationships of brainstem cell types and nuclei, including subpopulations of melanin and TH+ neurons, and allows for more informed structural annotation of cell groups. Moreover, the coregistered MRI-paired histology helps validate imaging findings. This is useful for interpreting both scans and histology, and to understand the cell types affected by lesions. Our detailed chemoarchitecture and cytoarchitecture with corresponding high-resolution MRI builds on previous atlases of the human brainstem and cerebellum, and makes precise identification of brainstem and cerebellar cell groups involved in clinical lesions accessible for both laboratory scientists and clinicians alike.SIGNIFICANCE STATEMENT Clinicians and neuroscientists frequently use cross-sectional anatomy of the human brainstem from MRI scans for both clinical and laboratory investigations, but they must rely on brain atlases to neuroanatomical structures. Such atlases generally lack both detail of brainstem chemical cell types, and the cerebellum, which provides an important spatial reference. Our current atlas maps the distribution of key brainstem cell types (cholinergic, serotonergic, and catecholaminergic neurons) in relationship to each other and the cerebellum, and pairs this histology with 7T MR images from the identical brain. This atlas allows correlation of the chemoarchitecture with corresponding MRI, and makes the identification of cell groups that are often discussed, but rarely identifiable on MRI scan, accessible to clinicians and clinical researchers.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Humanos , Masculino , Tronco Encefálico/diagnóstico por imagen , Encéfalo/metabolismo , Neuronas
10.
Br J Haematol ; 204(1): 160-170, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881141

RESUMEN

Mantle cell lymphoma (MCL) is clinically and biologically heterogeneous. While various prognostic features have been proposed, none currently impact therapy selection, particularly in older patients, for whom treatment is primarily dictated by age and comorbidities. Herein, we undertook a comprehensive comparison of clinicopathological features in a cohort of patients 60 years and older, uniformly treated with bendamustine and rituximab, with a median survival of >8 years. The strongest prognostic indicators in this cohort were a high-risk call by a simplified MCL international prognostic index (s-MIPI) (HR: 3.32, 95% CI: 1.65-6.68 compared to low risk), a high-risk call by MCL35 (HR: 10.34, 95% CI: 2.37-45.20 compared to low risk) and blastoid cytology (HR: 4.21, 95% CR: 1.92-9.22 compared to classic). Patients called high risk by both the s-MIPI and MCL35 had the most dismal prognosis (HR: 11.58, 95% CI: 4.10-32.72), while those with high risk by either had a moderate but clinically relevant prognosis (HR: 2.95, 95% CI: 1.49-5.82). A robust assay to assess proliferation, such as MCL35, along with stringent guidelines for cytological evaluation of MCL, in combination with MIPI, may be a strong path to risk-stratify older MCL patients in future clinical trials.


Asunto(s)
Linfoma de Células del Manto , Adulto , Humanos , Anciano , Linfoma de Células del Manto/patología , Rituximab/efectos adversos , Clorhidrato de Bendamustina/uso terapéutico , Biomarcadores , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
11.
Small ; 20(29): e2309140, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342712

RESUMEN

The successful translation of therapeutic nucleic acids (NAs) for the treatment of neurological disorders depends on their safe and efficient delivery to neural cells, in particular neurons. DNA nanostructures can be a promising NAs delivery vehicle. Nonetheless, the potential of DNA nanostructures for neuronal cell delivery of therapeutic NAs is unexplored. Here, tetrahedral DNA nanostructures (TDN) as siRNA delivery scaffolds to neuronal cells, exploring the influence of functionalization with two different reported neuronal targeting ligands: C4-3 RNA aptamer and Tet1 peptide are investigated. Nanostructures are characterized in vitro, as well as in silico using molecular dynamic simulations to better understand the overall TDN structural stability. Enhancement of neuronal cell uptake of TDN functionalized with the C4-3 Aptamer (TDN-Apt), not only in neuronal cell lines but also in primary neuronal cell cultures is demonstrated. Additionally, TDN and TDN-Apt nanostructures carrying siRNA are shown to promote silencing in a process aided by chloroquine-induced endosomal disruption. This work presents a thorough workflow for the structural and functional characterization of the proposed TDN as a nano-scaffold for neuronal delivery of therapeutic NAs and for targeting ligands evaluation, contributing to the future development of new neuronal drug delivery systems based on DNA nanostructures.


Asunto(s)
ADN , Nanoestructuras , Neuronas , ARN Interferente Pequeño , Nanoestructuras/química , Neuronas/metabolismo , ADN/química , ADN/metabolismo , Animales , Humanos , Aptámeros de Nucleótidos/química , Ácidos Nucleicos/química , Simulación de Dinámica Molecular
12.
New Phytol ; 244(1): 21-31, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39021246

RESUMEN

Even though they share many thematical overlaps, plant metabolomics and stable isotope ecology have been rather separate fields mainly due to different mass spectrometry demands. New high-resolution bioanalytical mass spectrometers are now not only offering high-throughput metabolite identification but are also suitable for compound- and intramolecular position-specific isotope analysis in the natural isotope abundance range. In plant metabolomics, label-free metabolic pathway and metabolic flux analysis might become possible when applying this new technology. This is because changes in the commitment of substrates to particular metabolic pathways and the activation or deactivation of others alter enzyme-specific isotope effects. This leads to differences in intramolecular and compound-specific isotope compositions. In plant isotope ecology, position-specific isotope analysis in plant archives informed by metabolic pathway analysis could be used to reconstruct and separate environmental impacts on complex metabolic processes. A technology-driven linkage between the two disciplines could allow us to extract information on environment-metabolism interaction from plant archives such as tree rings but also within ecosystems. This would contribute to a holistic understanding of how plants react to environmental drivers, thus also providing helpful information on the trajectories of the vegetation under the conditions to come.


Asunto(s)
Ecología , Análisis de Flujos Metabólicos , Metabolómica , Plantas , Metabolómica/métodos , Plantas/metabolismo , Análisis de Flujos Metabólicos/métodos , Isótopos/metabolismo , Archivos , Ecosistema , Marcaje Isotópico/métodos
13.
New Phytol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205457

RESUMEN

Climate change not only leads to higher air temperatures but also increases the vapour pressure deficit (VPD) of the air. Understanding the direct effect of VPD on leaf gas exchange is crucial for precise modelling of stomatal functioning. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a VPD range of 0.8-3.6 kPa, while maintaining constant temperatures without soil water limitation. In addition to applying the standard assumption of saturated vapour pressure inside leaves (ei), we inferred ei from oxygen isotope discrimination of CO2 and water vapour. ei desaturated progressively with increasing VPD, consistently across species, resulting in an intercellular relative humidity as low as 0.73 ± 0.11 at the highest tested VPD. Assuming saturation of ei overestimated the extent of reductions in stomatal conductance and CO2 mole fraction inside leaves in response to increasing VPD compared with calculations that accounted for unsaturation. In addition, a significant decrease in mesophyll conductance with increasing VPD only occurred when the unsaturation of ei was considered. We suggest that the possibility of unsaturated ei should not be overlooked in measurements related to leaf gas exchange and in stomatal models, especially at high VPD.

14.
New Phytol ; 241(6): 2366-2378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38303410

RESUMEN

The strong covariation of temperature and vapour pressure deficit (VPD) in nature limits our understanding of the direct effects of temperature on leaf gas exchange. Stable isotopes in CO2 and H2 O vapour provide mechanistic insight into physiological and biochemical processes during leaf gas exchange. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a leaf temperature range of 5-40°C, while maintaining a constant leaf-to-air VPD (0.8 kPa) without soil water limitation. Above the optimum temperature for photosynthesis (30°C) under the controlled environmental conditions, stomatal conductance (gs ) and net photosynthesis rate (An ) decoupled across all tested species, with gs increasing but An decreasing. During this decoupling, mesophyll conductance (cell wall, plasma membrane and chloroplast membrane conductance) consistently and significantly decreased among species; however, this reduction did not lead to reductions in CO2 concentration at the chloroplast surface and stroma. We question the conventional understanding that diffusional limitations of CO2 contribute to the reduction in photosynthesis at high temperatures. We suggest that stomata and mesophyll membranes could work strategically to facilitate transpiration cooling and CO2 supply, thus alleviating heat stress on leaf photosynthetic function, albeit at the cost of reduced water-use efficiency.


Asunto(s)
Dióxido de Carbono , Estomas de Plantas , Estomas de Plantas/fisiología , Temperatura , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Isótopos , Agua/fisiología
15.
New Phytol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169823

RESUMEN

Measurements of stable isotope ratios in organic compounds are widely used tools for plant ecophysiological studies. However, the complexity of the processes involved in shaping hydrogen isotope values (δ2H) in plant carbohydrates has limited its broader application. To investigate the underlying biochemical processes responsible for 2H fractionation among water, sugars, and cellulose in leaves, we studied the three main CO2 fixation pathways (C3, C4, and CAM) and their response to changes in temperature and vapor pressure deficit (VPD). We show significant differences in autotrophic 2H fractionation (εA) from water to sugar among the pathways and their response to changes in air temperature and VPD. The strong 2H depleting εA in C3 plants is likely driven by the photosynthetic H+ production within the thylakoids, a reaction that is spatially separated in C4 and strongly reduced in CAM plants, leading to the absence of 2H depletion in the latter two types. By contrast, we found that the heterotrophic 2H-fractionation (εH) from sugar to cellulose was very similar among the three pathways and is likely driven by the plant's metabolism, rather than by isotopic exchange with leaf water. Our study offers new insights into the biochemical drivers of 2H fractionation in plant carbohydrates.

16.
Epidemiology ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316827

RESUMEN

BACKGROUND: We examined interactions, to our knowledge not yet explored, between long-term exposures to particulate matter (PM 10 ) with nitrogen dioxide (NO 2 ) and ozone (O 3 ) on SARS-CoV-2 infectivity and severity. METHODS: We followed 709,864 adult residents of Varese Province from 1 February 2020 until the first positive test, COVID-19 hospitalization, or death, up to 31 December 2020. We estimated residential annual means of PM 10 , NO 2 and O 3 in 2019 from chemical-transport and random-forest models. We estimated interactive effects of pollutants with urbanicity on SARS-CoV-2 infectivity, hospitalization, and mortality endpoints using Cox regression models adjusted for socio-demographic factors and comorbidities, and additional cases due to interactions using Poisson models. RESULTS: 41,065 individuals were infected, 5,203 were hospitalized and 1,543 died from COVID-19 during follow-up. Mean PM 10 was 1.6 times higher and NO 2 2.6 times higher than WHO limits, with wide gradients between urban and non-urban areas. PM 10 and NO 2 were positively associated with SARS-CoV-2 infectivity and mortality, and PM 10 with hospitalizations in urban areas. Interaction analyses estimated that the effect of PM 10 (per 3.5 µg/m 3 ) on infectivity was strongest in urban areas (HR=1.12, 95%CI:1.09-1.16), corresponding to 854 additional cases per 100,000 person-years, and in areas at high NO 2 co-exposure (HR=1.15, 1.08-1.22). At higher levels of PM 10 co-exposure the protective association of ozone reversed (HR=1.32, 1.17-1.49), yielding to 278 additional cases per µg/m 3 increase in O 3 . We estimated similar interactive effects for severity endpoints. CONCLUSIONS: We estimate that interactive effects between pollutants exacerbated the burden of SARS-CoV-2 pandemic in urban areas.

17.
Plant Cell Environ ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351616

RESUMEN

Despite considerable experimental effort, the physiological mechanisms governing temperate tree species' water and carbon dynamics before the onset of the growing period remain poorly understood. We applied 2H-enriched water during winter dormancy to the soil of four potted European tree species. After 8 weeks of chilling, hydrogen isotopes in stem, twig and bud water were measured six times during 2 consecutive weeks of forcing conditions (Experiment 1). Additionally, we pulse-labelled above-ground plant tissues using 2H-enriched water vapour and 13C-enriched CO2 7 days after exposure to forcing conditions to trace atmospheric water and carbon uptake (Experiment 2). Experiment 1 revealed soil water incorporation into the above-ground organs of all species during the chilling phase and significant species-specific differences in water allocation during the forcing conditions, which we attributed to differences in structural traits. Experiment 2 illustrated water vapour incorporation into all above-ground tissue of all species. However, the incorporation of carbon was found for evergreen saplings only. Our results suggest that temperate trees take up and reallocate soil water and absorb atmospheric water to maintain sufficient above-ground tissue hydration during winter. Therefore, our findings provide new insights into the water allocation dynamics of temperate trees during early spring.

18.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271585

RESUMEN

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Asunto(s)
Carbono , Bosque Lluvioso , Carbono/metabolismo , Ecosistema , Sequías , Agua/metabolismo , Árboles/metabolismo , Carbohidratos , Hojas de la Planta/metabolismo
19.
Glob Chang Biol ; 30(3): e17237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488024

RESUMEN

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.


Asunto(s)
Pinus sylvestris , Árboles , Ecosistema , Sequías , Isótopos/análisis , Pinus sylvestris/fisiología , Aclimatación , Agua/fisiología , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis
20.
Strahlenther Onkol ; 200(2): 159-174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37272996

RESUMEN

PURPOSE: Spinal metastases (SM) are a common radiotherapy (RT) indication. There is limited level I data to drive decision making regarding dose regimen (DR) and target volume definition (TVD). We aim to depict the patterns of care for RT of SM among German Society for Radiation Oncology (DEGRO) members. METHODS: An online survey on conventional RT and Stereotactic Body Radiation Therapy (SBRT) for SM, distributed via e­mail to all DEGRO members, was completed by 80 radiation oncologists between February 24 and April 29, 2022. Participation was voluntary and anonymous. RESULTS: A variety of DR was frequently used for conventional RT (primary: n = 15, adjuvant: n = 14). 30 Gy/10 fractions was reported most frequently. TVD in adjuvant RT was heterogenous, with a trend towards larger volumes. SBRT was offered in 65% (primary) and 21% (adjuvant) of participants' institutions. A variety of DR was reported (primary: n = 40, adjuvant: n = 27), most commonly 27 Gy/3 fractions and 30 Gy/5 fractions. 59% followed International Consensus Guidelines (ICG) for TVD. CONCLUSION: We provide a representative depiction of RT practice for SM among DEGRO members. DR and TVD are heterogeneous. SBRT is not comprehensively practiced, especially in the adjuvant setting. Further research is needed to provide a solid data basis for detailed recommendations.


Asunto(s)
Oncología por Radiación , Radiocirugia , Neoplasias de la Columna Vertebral , Humanos , Neoplasias de la Columna Vertebral/radioterapia , Neoplasias de la Columna Vertebral/secundario , Oncólogos de Radiación , Encuestas y Cuestionarios , Radiocirugia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA