Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RNA ; 29(9): 1423-1436, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295923

RESUMEN

Over recent years, long-range RNA structure has emerged as a factor that is fundamental to alternative splicing regulation. An increasing number of human disorders are now being associated with splicing defects; hence it is essential to develop methods that assess long-range RNA structure experimentally. RNA in situ conformation sequencing (RIC-seq) is a method that recapitulates RNA structure within physiological RNA-protein complexes. In this work, we juxtapose pairs of conserved complementary regions (PCCRs) that were predicted in silico with the results of RIC-seq experiments conducted in seven human cell lines. We show statistically that RIC-seq support of PCCRs correlates with their properties, such as equilibrium free energy, presence of compensatory substitutions, and occurrence of A-to-I RNA editing sites and forked eCLIP peaks. Exons enclosed in PCCRs that are supported by RIC-seq tend to have weaker splice sites and lower inclusion rates, which is indicative of post-transcriptional splicing regulation mediated by RNA structure. Based on these findings, we prioritize PCCRs according to their RIC-seq support and show, using antisense nucleotides and minigene mutagenesis, that PCCRs in two disease-associated human genes, PHF20L1 and CASK, and also PCCRs in their murine orthologs, impact alternative splicing. In sum, we demonstrate how RIC-seq experiments can be used to discover functional long-range RNA structures, and particularly those that regulate alternative splicing.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Animales , Ratones , Secuencia de Bases , Análisis de Secuencia de ARN , ARN/genética , Sitios de Empalme de ARN , Proteínas Cromosómicas no Histona/genética
2.
Nucleic Acids Res ; 51(7): 3055-3066, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912101

RESUMEN

Eukaryotic gene expression is regulated post-transcriptionally by a mechanism called unproductive splicing, in which mRNA is triggered to degrade by the nonsense-mediated decay (NMD) pathway as a result of regulated alternative splicing (AS). Only a few dozen unproductive splicing events (USEs) are currently documented, and many more remain to be identified. Here, we analyzed RNA-seq experiments from the Genotype-Tissue Expression (GTEx) Consortium to identify USEs, in which an increase in the NMD isoform splicing rate is accompanied by tissue-specific down-regulation of the host gene. To characterize RNA-binding proteins (RBPs) that regulate USEs, we superimposed these results with RBP footprinting data and experiments on the response of the transcriptome to the perturbation of expression of a large panel of RBPs. Concordant tissue-specific changes between the expression of RBP and USE splicing rate revealed a high-confidence regulatory network including 27 tissue-specific USEs with strong evidence of RBP binding. Among them, we found previously unknown PTBP1-controlled events in the DCLK2 and IQGAP1 genes, for which we confirmed the regulatory effect using small interfering RNA (siRNA) knockdown experiments in the A549 cell line. In sum, we present a transcriptomic pipeline that allows the identification of tissue-specific USEs, potentially many more than were reported here using stringent filters.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Regulación de la Expresión Génica , Degradación de ARNm Mediada por Codón sin Sentido , Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Humanos , Línea Celular
3.
NAR Genom Bioinform ; 6(1): lqad113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38226395

RESUMEN

The mammalian BRD2 and BRD3 genes encode structurally related proteins from the bromodomain and extraterminal domain protein family. The expression of BRD2 is regulated by unproductive splicing upon inclusion of exon 3b, which is located in the region encoding a bromodomain. Bioinformatic analysis indicated that BRD2 exon 3b inclusion is controlled by a pair of conserved complementary regions (PCCR) located in the flanking introns. Furthermore, we identified a highly conserved element encoding a cryptic poison exon 5b and a previously unknown PCCR in the intron between exons 5 and 6 of BRD3, however, outside of the homologous bromodomain. Minigene mutagenesis and blockage of RNA structure by antisense oligonucleotides demonstrated that RNA structure controls the rate of inclusion of poison exons. The patterns of BRD2 and BRD3 expression and splicing show downregulation upon inclusion of poison exons, which become skipped in response to transcription elongation slowdown, further confirming a role of PCCRs in unproductive splicing regulation. We conclude that BRD2 and BRD3 independently acquired poison exons and RNA structures to dynamically control unproductive splicing. This study describes a convergent evolution of regulatory unproductive splicing mechanisms in these genes, providing implications for selective modulation of their expression in therapeutic applications.

4.
NAR Genom Bioinform ; 5(2): lqad051, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37260513

RESUMEN

Alternative splicing (AS) and alternative polyadenylation (APA) are two crucial steps in the post-transcriptional regulation of eukaryotic gene expression. Protocols capturing and sequencing RNA 3'-ends have uncovered widespread intronic polyadenylation (IPA) in normal and disease conditions, where it is currently attributed to stochastic variations in the pre-mRNA processing. Here, we took advantage of the massive amount of RNA-seq data generated by the Genotype Tissue Expression project (GTEx) to simultaneously identify and match tissue-specific expression of intronic polyadenylation sites with tissue-specific splicing. A combination of computational methods including the analysis of short reads with non-templated adenines revealed that APA events are more abundant in introns than in exons. While the rate of IPA in composite terminal exons and skipped terminal exons expectedly correlates with splicing, we observed a considerable fraction of IPA events that lack AS support and attributed them to spliced polyadenylated introns (SPI). We hypothesize that SPIs represent transient byproducts of a dynamic coupling between APA and AS, in which the spliceosome removes the intron while it is being cleaved and polyadenylated. These findings indicate that cotranscriptional pre-mRNA splicing could serve as a rescue mechanism to suppress premature transcription termination at intronic polyadenylation sites.

5.
PeerJ ; 11: e16414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38047033

RESUMEN

RNA structure has been increasingly recognized as a critical player in the biogenesis and turnover of many transcripts classes. In eukaryotes, the prediction of RNA structure by thermodynamic modeling meets fundamental limitations due to the large sizes and complex, discontinuous organization of eukaryotic genes. Signatures of functional RNA structures can be found by detecting compensatory substitutions in homologous sequences, but a comparative approach is applicable only within conserved sequence blocks. Here, we developed a computational pipeline called PHRIC, which is not limited to conserved regions and relies on RNA contacts derived from RNA in situ conformation sequencing (RIC-seq) experiments. It extracts pairs of short RNA fragments surrounded by nested clusters of RNA contacts and predicts long, nearly perfect complementary base pairings formed between these fragments. In application to a panel of RIC-seq experiments in seven human cell lines, PHRIC predicted ~12,000 stable long-range RNA structures with equilibrium free energy below -15 kcal/mol, the vast majority of which fall outside of regions annotated as conserved among vertebrates. These structures, nevertheless, show some level of sequence conservation and remarkable compensatory substitution patterns in other clades. Furthermore, we found that introns have a higher propensity to form stable long-range RNA structures between each other, and moreover that RNA structures tend to concentrate within the same intron rather than connect adjacent introns. These results for the first time extend the application of proximity ligation assays to RNA structure prediction beyond conserved regions.


Asunto(s)
ARN , Transcriptoma , Animales , Humanos , ARN/genética , Secuencia de Bases , Transcriptoma/genética , Intrones , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA