Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Nutr ; 151(4): 785-799, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512502

RESUMEN

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE: We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS: Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS: We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS: Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos Sulfúricos/deficiencia , Factor de Transcripción Activador 4/deficiencia , Factor de Transcripción Activador 4/genética , Aminoácidos Sulfúricos/sangre , Aminoácidos Sulfúricos/metabolismo , Animales , Antioxidantes/metabolismo , Composición Corporal , ADN/biosíntesis , Dietoterapia , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Factores Sexuales , Estrés Fisiológico
2.
Nutr Neurosci ; 21(10): 715-728, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28686546

RESUMEN

Fatty acid-induced hypothalamic inflammation (HI) is a potential cause of the obesity epidemic. It is unclear whether saturated or n-6 polyunsaturated fat is the primary driver of these effects. Premenopausal women are protected, in part, from obesity and associated comorbidities by circulating 17ß-estradiol (E2). It is unknown how HI interacts with E2, because most studies of HI do not examine females despite the involvement of E2 in hypothalamic energy homeostasis. Our objective is to determine the effects of high-fat diets with varying levels of linoleic acid (LA) and saturated fat on the energy and glucose homeostasis in female mice with and without E2. Female C57BL/6J mice were fed either a control diet or a 45% kilocalories from fat diet with varying levels of LA (1, 15, or 22.5% kilocalories from LA) with or without E2 (300 µg/kg/day orally). After 8 weeks, the oil-treated high-fat groups gained more weight than control groups regardless of fat type. E2 reduced body fat accumulation in all high-fat groups. Glucose clearance from glucose challenge was impaired by LA. Nighttime O2 consumption was increased by E2, regardless of diet and independent of activity. Neuropeptides and HI genes were not affected by LA or SFA content. These data show that fatty acid type does not affect body weight, but does affect glucose metabolism in females, and these effects are not associated with an induction in HI gene expression.


Asunto(s)
Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Estradiol/farmacología , Adiposidad , Animales , Composición Corporal , Peso Corporal , Dieta , Grasas de la Dieta/administración & dosificación , Estradiol/sangre , Ácidos Grasos/administración & dosificación , Femenino , Homeostasis , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Interleucina-6/sangre , Leptina/sangre , Ácido Linoleico/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/etiología , Obesidad/prevención & control , Consumo de Oxígeno , Aumento de Peso
3.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39211148

RESUMEN

Major developmental events occurring in the hippocampus during the third trimester of human gestation and neonatally in altricial rodents include rapid and synchronized dendritic arborization and astrocyte proliferation and maturation. We tested the hypothesis that signals sent by developing astrocytes to developing neurons modulate dendritic development in vivo. We altered neuronal development by neonatal (third trimester-equivalent) ethanol exposure in mice; this treatment increased dendritic arborization in hippocampal pyramidal neurons. We next assessed concurrent changes in the mouse astrocyte translatome by translating ribosomal affinity purification (TRAP)-seq. We followed up on ethanol-inhibition of astrocyte Chpf2 and Chsy1 gene translation because these genes encode for biosynthetic enzymes of chondroitin sulfate glycosaminoglycan (CS-GAG) chains (extracellular matrix components that inhibit neuronal development and plasticity) and have not been explored before for their roles in dendritic arborization. We report that Chpf2 and Chsy1 are enriched in astrocytes and their translation is inhibited by ethanol, which also reduces the levels of CS-GAGs measured by Liquid Chromatography/Mass Spectrometry. Finally, astrocyte-conditioned medium derived from Chfp2-silenced astrocytes increased neurite branching of hippocampal neurons in vitro. These results demonstrate that CS-GAG biosynthetic enzymes in astrocytes regulates dendritic arborization in developing neurons.

4.
J Dev Orig Health Dis ; 11(3): 273-284, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31556363

RESUMEN

The early-life origins of disease hypothesis has been applied to obesity research and modeled through overnutrition, usually with a high-fat diet (HFD). Since the obesity epidemic coincided with societal change in dietary fat consumption, rather than amount, manipulation of fatty acid (FA) profile is an under-investigated area of study. Additionally, the binding of FAs to nuclear receptors may have persistent intergenerational, extranutritive endocrinological effects that interact with the actions of reproductive steroids causing sex-dependent effects. To determine the role of FA type in the effects underlying maternal HFD, we fed wild-type C57BL6/J mating pairs, from preconception through lactation, a HFD with high saturated fat levels from coconut oil or high linoleic acid (LA) levels from vegetable oil. Male and female offspring body weight and food intake were measured weekly for 25 weeks. Assays for glucose metabolism, body composition, and calorimetry were performed at 25 weeks. Plasma metabolic peptides and liver mRNA were measured terminally. Obesity was primarily affected by adult rather than maternal diet in males, yet in females, maternal HFD potentiated the effects of adult HFD. Maternal HFD high in LA impaired glucose disposal in males weaned onto HFD and insulin sensitivity of females. Plasma leptin correlated with adiposity, but insulin and insulin receptor expression in the liver were altered by maternal LA in males. Our results suggest that maternal FA profile is most influential on offspring glucose metabolism and that adult diet is more important than maternal diet for obesity and other parameters of metabolic syndrome.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Fenómenos Fisiológicos Nutricionales del Lactante , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/epidemiología , Adiposidad/fisiología , Animales , Animales Lactantes/metabolismo , Peso Corporal/fisiología , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/efectos adversos , Femenino , Humanos , Lactante , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Lactancia , Masculino , Ratones , Obesidad/metabolismo , Embarazo , Factores Sexuales , Destete
5.
Nutrients ; 11(6)2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208042

RESUMEN

Dietary sulfur amino acid restriction, also referred to as methionine restriction, increases food intake and energy expenditure and alters body composition in rodents, resulting in improved metabolic health and a longer lifespan. Among the known nutrient-responsive signaling pathways, the evolutionary conserved integrated stress response (ISR) is a lesser-understood candidate in mediating the hormetic effects of dietary sulfur amino acid restriction (SAAR). A key feature of the ISR is the concept that a family of protein kinases phosphorylates eukaryotic initiation factor 2 (eIF2), dampening general protein synthesis to conserve cellular resources. This slowed translation simultaneously allows for preferential translation of genes with special sequence features in the 5' leader. Among this class of mRNAs is activating transcription factor 4 (ATF4), an orchestrator of transcriptional control during nutrient stress. Several ATF4 gene targets help execute key processes affected by SAAR such as lipid metabolism, the transsulfuration pathway, and antioxidant defenses. Exploration of the canonical ISR demonstrates that eIF2 phosphorylation is not necessary for ATF4-driven changes in the transcriptome during SAAR. Additional research is needed to clarify the regulation of ATF4 and its gene targets during SAAR.


Asunto(s)
Aminoácidos Sulfúricos/deficiencia , Dieta/métodos , Metionina/deficiencia , Estrés Fisiológico/fisiología , Factor de Transcripción Activador 4/metabolismo , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Ratones , Fosforilación , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA