Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Physiol Genomics ; 56(7): 457-468, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738316

RESUMEN

Military training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises, varying in magnitude and type of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a 2-wk survival training course (ST, n = 36), a 4-day cross-country ski march arctic training (AT, n = 24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n = 26). Log2-fold changes of greater than ±1 in 191, 121, and 64 metabolites were identified in the ST, AT, and CED datasets, respectively. Most metabolite changes were within the lipid (57-63%) and amino acid metabolism (18-19%) pathways and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in the acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in the diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis, and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage, and suppression of anabolic signaling that may characterize the unique physiological demands of military training.NEW & NOTEWORTHY The extent to which metabolomic responses are shared across diverse military training environments is unknown. Global metabolomic profiling across three distinct military training exercises identified shared metabolic responses with the largest changes observed for metabolites related to fatty acids, acylcarnitines, ketone metabolism, and oxidative stress. These changes also correlated with alterations in markers of tissue damage, inflammation, and anabolic signaling and comprise a potential common metabolomic signature underlying the unique physiological demands of military training.


Asunto(s)
Metaboloma , Metabolómica , Personal Militar , Humanos , Metabolómica/métodos , Masculino , Adulto Joven , Estrés Fisiológico/fisiología , Adulto , Ejercicio Físico/fisiología , Carnitina/análogos & derivados , Carnitina/sangre
2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R25-R34, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682243

RESUMEN

Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.


Asunto(s)
Altitud , Estudios Cruzados , Ejercicio Físico , Glucosa , Hipoglucemiantes , Oxidación-Reducción , Pioglitazona , Humanos , Pioglitazona/administración & dosificación , Pioglitazona/farmacología , Masculino , Adulto Joven , Ejercicio Físico/fisiología , Adulto , Glucosa/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/farmacocinética , Tasa de Depuración Metabólica , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Insulina/sangre , Insulina/metabolismo
3.
J Nutr ; 154(6): 1758-1765, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38677478

RESUMEN

BACKGROUND: Considerable controversy exists surrounding the consumption of red meat and its impacts on cardiometabolic health and if it may further impact risk factors at the molecular level. OBJECTIVE: The purpose of this study was to examine the acute effects of dietary patterns, varying in red meat quantity, on the expression of circulating microRNAs (miRNAs), which are emerging biomarkers of metabolic dysfunction and chronic disease severity. METHODS: Secondary analyses were performed on plasma samples collected within a randomized, crossover design study in 16 women with overweight (mean ± standard deviation, age = 33 ± 9.89 y; body mass index = 27.9 ± 1.66 kg/m2). Participants were provided with eucaloric, isonitrogenous diets (15% of daily intake as protein) containing either 2 servings of fresh, lean beef/day (BEEF) or 0 servings of fresh, lean beef/day (PLANT) for 7 d/pattern. Fasting blood samples were collected at the end of each dietary pattern for the assessment of 12 circulating metabolic miRNA expression levels (determined a priori by quantitative reverse transcriptase-polymerase chain reaction), plasma glucose, insulin, interleukin-6, tumor necrosis factor-α, C-reactive protein (CRP), adiponectin, glucagon-like peptide-1, and branched-chain amino acids. RESULTS: Of the 12 miRNAs, miR-15b-5p expression was higher following BEEF versus PLANT (P = 0.024). Increased miR-15b-5p expression correlated with decreased fasting CRP (r = -0.494; P = 0.086) and insulin concentrations (r = -0.670; P = 0.017). miR-15b-5p was inversely correlated with insulin resistance (r = -0.642; P = 0.024) and ß cell function (r = -0.646; P = 0.023) and positively correlated with markers of insulin sensitivity (r = 0.520; P = 0.083). However, the correlations were only observed following BEEF, not PLANT. CONCLUSIONS: These data indicate that the short-term intake of fresh, lean beef as part of a healthy dietary pattern impacts potential biomarkers of cardiometabolic health that are associated with cardiometabolic risk factors in women with overweight. This study was registered at clinicaltrials.gov as NCT02614729.


Asunto(s)
Biomarcadores , Estudios Cruzados , MicroARNs , Carne Roja , MicroARNs/sangre , Femenino , Humanos , Adulto , Biomarcadores/sangre , Bovinos , Animales , Enfermedades Cardiovasculares , Factores de Riesgo Cardiometabólico , Dieta Saludable , Dieta , Factores de Riesgo , Patrones Dietéticos
4.
Temperature (Austin) ; 11(2): 170-181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846526

RESUMEN

Military missions are conducted in a multitude of environments including heat and may involve walking under load following severe exertion, the metabolic demands of which may have nutritional implications for fueling and recovery planning. Ten males equipped a military pack loaded to 30% of their body mass and walked in 20°C/40% relative humidity (RH) (TEMP) or 37°C/20% RH (HOT) either continuously (CW) for 90 min at the first ventilatory threshold or mixed walking (MW) with unloaded running intervals above the second ventilatory threshold between min 35 and 55 of the 90 min bout. Pulmonary gas, thermoregulatory, and cardiovascular variables were analyzed following running intervals. Final rectal temperature (MW: p < 0.001, g = 3.81, CW: p < 0.001, g = 4.04), oxygen uptake, cardiovascular strain, and energy expenditure were higher during HOT trials (p ≤ 0.05) regardless of exercise type. Both HOT trials elicited higher final carbohydrate oxidation (CHOox) than TEMP CW at min 90 (HOT MW: p < 0.001, g = 1.45, HOT CW: p = 0.009, g = 0.67) and HOT MW CHOox exceeded TEMP MW at min 80 and 90 (p = 0.049, g = 0.60 and p = 0.024, g = 0.73, respectively). There were no within-environment differences in substrate oxidation indicating that severe exertion work cycles did not produce a carryover effect during subsequent loaded walking. The rate of CHOox during 90 minutes of load carriage in the heat appears to be primarily affected by accumulated thermal load.

5.
Physiol Rep ; 12(16): e70009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39174870

RESUMEN

The objective of this study was to examine the effect of consuming ketone monoester plus a high dose of carbohydrate from glucose (KE + CHO) on the change in erythropoietin (EPO) concentrations during load carriage exercise compared with carbohydrate (CHO) alone. Using a randomized, crossover design, 12 males consumed KE + CHO (573 mg KE/kg body mass, 110 g glucose) or CHO (110 g glucose) 30 min before 4 miles of self-paced treadmill exercise (KE + CHO:51 ± 13%, CHO: 52 ± 12% V̇O2peak) wearing a weighted vest (30% body mass; 25 ± 3 kg). Blood samples for analysis were obtained under resting fasted conditions before (Baseline) consuming the KE + CHO or CHO supplement and immediately after exercise (Post). ßHB increased (p < 0.05) from Baseline to Post in KE + CHO, with no change in CHO. Glucose and glycerol increased (p < 0.05) from Baseline to Post in CHO, with no effect of time in KE + CHO. Insulin and lactate increased (p < 0.05) from Baseline to Post independent of treatment. EPO increased (p < 0.05) from Baseline to Post in KE + CHO and CHO with no difference between treatments. Although KE + CHO altered ßHB, glucose, and glycerol concentrations, results from this study suggest that KE + CHO supplementation before load carriage exercise does not enhance immediate post-exercise increases in EPO compared with CHO alone.


Asunto(s)
Suplementos Dietéticos , Eritropoyetina , Ejercicio Físico , Glucosa , Humanos , Masculino , Eritropoyetina/administración & dosificación , Eritropoyetina/sangre , Ejercicio Físico/fisiología , Adulto , Glucosa/metabolismo , Glucosa/administración & dosificación , Glucemia/metabolismo , Estudios Cruzados , Cetonas/sangre , Cetonas/administración & dosificación , Adulto Joven , Carbohidratos de la Dieta/administración & dosificación , Ácido Láctico/sangre , Insulina/sangre
6.
Physiol Rep ; 12(10): e16038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757249

RESUMEN

This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.


Asunto(s)
Eritropoyetina , Ejercicio Físico , Músculo Esquelético , Oxidación-Reducción , Masculino , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Adulto , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Oxidación-Reducción/efectos de los fármacos , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Hematócrito , Metabolismo Energético/efectos de los fármacos , Adulto Joven , Metabolismo de los Lípidos/efectos de los fármacos
7.
Med Sci Sports Exerc ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160756

RESUMEN

PURPOSE: Energy deficiency decreases muscle protein synthesis (MPS), possibly due to greater whole-body essential amino acid (EAA) requirements and reliance on energy stores. Whether energy deficit-induced anabolic resistance is overcome with non-nitrogenous supplemental energy or if increased energy as EAA is needed is unclear. We tested the effects of energy as EAA or carbohydrate, combined with an EAA-enriched whey protein, on post-exercise MPS (%/h) and whole-body protein turnover (g protein/240 min). METHODS: 17 adults (mean ± SD; age: 26 ± 6 y, BMI: 25 ± 3 kg/m2) completed a randomized, parallel study including two 5-d energy conditions (BAL, energy balance; DEF, -30 ± 3% energy requirements) separated by ≥7 d. Volunteers consumed EAA-enriched whey with added EAA (+EAA; 304 kcal, 56 g protein, 48 g EAA, 17 g carbohydrate, 2 g fat; n = 8) or added carbohydrate (+CHO; 311 kcal, 34 g protein, 24 g EAA, 40 g carbohydrate, 2 g fat; n = 9) following exercise. MPS and whole-body protein synthesis (PS), breakdown (PB), and net balance (NET; PS-PB) were estimated postexercise with isotope kinetics. RESULTS: MPS rates were greater in +EAA (0.083 ± 0.02) than +CHO (0.059 ± 0.01; P = 0.015) during DEF, but similar during BAL (P = 0.45) and across energy conditions within treatments (P = 0.056). PS rates were greater for +EAA (BAL, 117.9 ± 16.5; DEF, 110.3 ± 14.8) than +CHO (BAL, 81.6 ± 8.0; DEF, 83.8 ± 5.9 g protein/240 min; both P < 0.001), and greater during BAL than DEF in +EAA (P = 0.045). PB rates were less in +EAA (8.0 ± 16.5) than +CHO (37.8 ± 7.6 g protein/240 min; P < 0.001), and NET was greater in +EAA (106.1 ± 6.3) than +CHO (44.8 ± 8.5 g protein/240 min; P < 0.001). CONCLUSIONS: These data suggest that supplementing EAA-enriched whey protein with more energy as EAA, not carbohydrate, maintains postexercise MPS during energy deficit at rates comparable to those observed during energy balance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA