RESUMEN
Wounds represent a growing global issue demanding increased attention. To expedite wound healing, technologies are under development, and light emitting diode (LED) devices of varying wavelengths are being explored for their stimulating influence on the healing process. This article presents a systematic literature review aiming to compile, organize, and analyze the impacts of LED devices on wound healing. This review is registered on the PROSPERO platform [CRD42023403870]. Two blinded authors conducted searches in the Pubmed, Web of Science, Scopus, Embase, and ScienceDirect databases. In vitro and in vivo experimental studies assessing LED utilization in the wound healing process were included. The search yielded 1010 studies, of which 27 were included in the review. It was identified that LED stimulates different healing pathways, promoting enhanced cell proliferation and migration, angiogenesis stimulation, increased collagen deposition, and modulation of the inflammatory response. Thus, it can be concluded that the LED stimulates cellular and molecular processes contingent on the utilized parameters. The effects depend on the standards used. Cell migration and proliferation were better influenced by green and red LED. The extracellular matrix components and angiogenesis were regulated by all wavelengths and the modulation of inflammation was mediated by green, red, and infrared LEDs.
Asunto(s)
Proliferación Celular , Cicatrización de Heridas , Animales , Humanos , Movimiento Celular , Luz , FototerapiaRESUMEN
Cancer is the second leading cause of death worldwide and is considered a major public health problem. Despite the significant advances in cancer research, the conventional cancer treatment approaches often lead to serious side effects that affect the quality of life of cancer patients. Thus, searching for new alternatives for cancer treatment is crucial to minimize these problems. Chalcone-sulfonamide hybrids display a range of biological activities and have been widely investigated for their anticancer potential, being considered promising molecules for cancer treatment. This systematic review aimed to summarize the information available in the literature about the anticancer potential of chalcones-sulfonamides in vitro and in vivo and their mechanisms of action. Our analysis demonstrated that chalcones-sulfonamides have relevant cytotoxic potential against different cancer cell lines in vitro, especially against the human colorectal carcinoma cell line HCT-116. These molecules have also reduced tumor growth in vivo. Some chalcones-sulfonamides had improved cytotoxicity after chemical modification and could become more selective or even more potent than reference chemotherapeutics. The mechanisms underlying these effects demonstrated that chalcones-sulfonamides may lead to cell death by different pathways, predominantly via apoptosis or necroptosis. This review may encourage researchers to advance studies with chalcones-sulfonamides, especially to elucidate their mechanisms of action, contributing to the development of new alternatives to cancer treatment.
Asunto(s)
Antineoplásicos , Chalconas , Sulfonamidas , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Chalconas/farmacología , Chalconas/química , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Sulfonamidas/química , Sulfonamidas/farmacologíaRESUMEN
Withanolides are steroidal lactones commonly found in plants of the Solanaceae family that have significant medicinal value. In this study, three withanolides extracted from Iochroma arborescens leaves were isolated and characterized. These included withaphysalin F (3: ) and two newly identified epimeric compounds: 18R- and 18S-O-methyl-withaphysalin F (1: and 2: ). Their structures were elucidated by NMR, IR, MS, CD, and X-ray diffraction analysis, and their potential against cell proliferation and migration was investigated. The cytotoxic assay revealed activity against different tumor and non-tumor cell lines. (18S)-O-methyl-withaphysalin F (2: ) presented cell death effects after at least 6 hours of exposure. MDA-MB-231 cells were exposed to 0.06 and 0.6 µM of (18S)-O-methyl-withaphysalin F (2: ), and reductions in cell adhesion, migration, and clonogenicity were observed. Morphological analysis revealed negative regulation in filopodia, salience, and roughness, as well as alterations in cellular microarchitecture. These results provide clues as to the effects of (18S)-O-methyl-withaphysalin F (2: ), allowing new molecular modifications to improve potency and selectivity and increase our antineoplastic arsenal.
Asunto(s)
Antineoplásicos Fitogénicos , Movimiento Celular , Proliferación Celular , Humanos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Witanólidos/farmacología , Witanólidos/aislamiento & purificación , Witanólidos/química , Solanaceae/química , Estructura Molecular , Hojas de la Planta/químicaRESUMEN
Resistance to antimicrobials is a challenging issue that complicates the treatment of infections caused by bacteria and fungi, thus requiring new therapeutic options. Oncocalyxone A, a benzoquinone obtained from Auxemma oncocalyx (Allem) Taub has several biological effects; however, there is no data on its antimicrobial action. In this study, its antimicrobial and antibiofilm activities were evaluated against bacteria and fungi of clinical interest. Strains of Gram-positive and Gram-negative bacteria, and filamentous fungi and yeasts were selected to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of oncocalyxone A. The antibacterial effect of oncocalyxone A was studied using survival curves, atomic force microscopy (AFM), and the involvement of oxidative stress. We examined the inhibitory action of the molecule on biofilm formation and its hemolytic activity against human erythrocytes. Our results showed that among the strains tested, Staphylococcus epidermidis was highly sensitive to the action of oncocalyxone A, with an MIC of 9.43 µg/mL. In most bacterial strains analyzed, a bacteriostatic effect was observed, though the molecule showed no antifungal activity. Antibiofilm activity was observed against the methicillin-resistant S. aureus bacteria. Additionally, results from atomic force microscopy imaging showed that oncocalyxone A significantly altered bacterial morphology. Further, oncocalyxone A showed no hemolytic activity at concentrations ≥151 µg/mL. Together, our results demonstrate the antibacterial and antibiofilm potential of oncocalyxone A, indicating its therapeutic potential against bacterial resistance.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Antraquinonas , Antibacterianos/farmacología , Benzoquinonas/farmacología , Biopelículas , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Pruebas de Sensibilidad MicrobianaRESUMEN
In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5ß1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.
Asunto(s)
Adhesión Celular , Movimiento Celular , Chalcona , Simulación del Acoplamiento Molecular , Sulfonamidas , Movimiento Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/química , Ratones , Animales , Línea Celular Tumoral , Chalcona/farmacología , Chalcona/química , Chalcona/análogos & derivados , Metaloproteinasa 2 de la Matriz/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Microscopía de Fuerza Atómica , Antineoplásicos/farmacología , Antineoplásicos/química , Chalconas/farmacología , Chalconas/química , HumanosRESUMEN
The understanding of cancer immunity and antitumor factors generated by natural polysaccharides is not yet fully comprehended. Polysaccharides, like cashew gum (CG), can exhibit immunomodulatory action and may assist in the antitumor process and side effects relieve. This study aimed to determine the antitumor effect of CG alone or in combination with cyclophosphamide (CTX), and its interactions with immune cells, in a murine melanoma model, using the B16-F10 cell line. Tumor growth inhibition, hematological, histopathological, ELISA, flow cytometry, immunofluorescence, and qRT-PCR analyses were performed to elucidate the antitumor potential, involvement of immune cells, and potential toxic effects. CG showed significant tumor growth inhibition, reaching up to 42.9 % alone and 51.4 % in combination with CTX, with mild toxicity to organs. CG enhanced leukocyte count, even in the presence of CTX. Furthermore, CG influenced the activation of tumor-associated macrophages (TAM), characterized by an increase in Il4, as well as a reduction in Ifng, Il1b, Tgfb, and Il6 gene expression. Nevertheless, these effects did not compromise the antitumor activity of CG. In summary, the combination of CG with CTX is a promising approach for leukopenia, one of the most important side effects of cancer treatment and deserves further investigation.
Asunto(s)
Anacardium , Ciclofosfamida , Melanoma Experimental , Animales , Ciclofosfamida/farmacología , Ratones , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Anacardium/química , Gomas de Plantas/química , Gomas de Plantas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Citocinas/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunologíaRESUMEN
Calotropis procera is a medicinal plant whose pharmacological properties are associated with its latex. Here, the Calotropis procera latex fractions were investigated in an attempt to trace its phytochemical profile and measure its anti-inflammatory and toxicity activity. The crude latex was partitioned, yielding five fractions (49.4% hexane, 5.2% dichloromethane, 2.0% ethyl acetate, 2.1% n-butanol, and 41.1% aqueous). Phytochemical screening and spectroscopy analysis revealed that dichloromethane is the most chemically diverse fraction. Triterpenes were detected in both the hexane and dichloromethane fractions, while flavonoids were detected in the dichloromethane and ethyl acetate fractions. These fractions were cytotoxic to cancer cell lines (LD50 0.05 to 3.9 µ g/mL) and lethal to brine shrimp (LD50 10.9 to 65.7 µ g/mL). Reduced neutrophil migration in rats was observed in carrageenan-induced peritonitis for the dichloromethane (67%), ethyl acetate (56%), and aqueous (72%) fractions. A positive reaction with tolidine and ninhydrin suggested that cyclopeptides are in the ethyl acetate fraction. It is therefore concluded that Calotropis procera latex dichloromethane and ethyl acetate fractions exhibit both in vitro and in vivo activities as well as anti-inflammatory properties. Cyclopeptide detection is especially interesting because previous attempts to investigate these low-molecular cyclic amino acid sequences in C. procera have failed.
Asunto(s)
Calotropis/química , Látex/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Masculino , Péptidos Cíclicos/toxicidad , Extractos Vegetales/toxicidad , RatasRESUMEN
Tree-exuded gums are natural polymers that represent an abundant raw material in the food and pharmaceutical industries. The cashew gum can be obtained by exudation of trees of the genus Anacardium, a native species of the Brazilian northeast; its polymer consists of monosaccharide units propitious to the action of chemical reactions that tend to improve their intrinsic characteristics among them, as the degree of hydro-solubility. The objective of this work was to modify the exudate gum of Anacardium occidentale (cashew gum (CG)) through an amine reaction. The modification was confirmed by Nuclear Magnetic Resonance (1H NMR), infrared spectroscopy (FTIR), gel permeation chromatography (GPC), zeta potential, and thermogravimetric analysis (TG). In addition, the chemical modification altered the molar mass and surface charge of the CG, and the amino group binding to the CG polymers was confirmed by FTIR spectra. In addition, cytotoxicity tests were performed where cell viability was estimated by an MTT assay on RAW 264.7 macrophages. Through these tests, it was found that the amine caused an increase in the thermal stability of the amino compounds and did not present cytotoxic potential at concentrations below 50.0 mg/L.
RESUMEN
Leishmaniasis is caused by several protozoan species of Leishmania, and being endemically present in 98 countries around the world, it is also a severe public-health problem. The available antileishmanial drugs are toxic and yet present risks of recurrent infection. Efforts to find new, effective, and safe oral agents for the treatment of leishmaniasis are continuing throughout the world. This work aimed to evaluate the antileishmania activity of cordiaquinone E (CORe), isolated from the roots of Cordia polycephala (Lam.) I. M. Johnston. Cytotoxicity, and possible mechanisms of action against promastigote and amastigote forms of Leishmania amazonensis were examined. CORe was effective in inhibiting promastigote (IC50 4.5 ± 0.3 µM) and axenic amastigote (IC50 2.89 ± 0.11 µM) growth in concentrations found non-toxic for the host cell (CC50 246.81 ± 14.5 µM). Our results revealed that CORe presents direct activity against the parasite, inducing cell death by apoptosis. CORe present greater activity against intracellular amastigotes (EC50 1.92 ± 0.2 µM), yet with much higher selectivity indexes than the reference drugs, being respectively more benign towards RAW 264.7 macrophages than meglumine antimoniate and amphotericin B, (respectively by 4.68 and 42.84 fold). The antiamastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels, as well as decreased IL-10 levels. These results encourage the progression of studies on this compound for the development of new leishmanicidal agents.
Asunto(s)
Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Naftoquinonas/farmacología , Tripanocidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células HL-60 , Interacciones Huésped-Parásitos , Humanos , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Naftoquinonas/toxicidad , Óxido Nítrico/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Tripanocidas/toxicidadRESUMEN
Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. Many of the available drugs against the disease are toxic and in certain cases parasite drug resistance is developed. The discovery of drugs for the treatment of leishmaniasis is a pressing concern. In the present work, we describe in vitro studies of the phenolic compound methyl gallate (MG) against Leishmania (Leishmania) amazonensis and its possible mechanisms of action. The in vitro activity of MG was assayed against L. amazonensis (promastigotes, axenic amastigotes, and intramacrophagic amastigotes). Cytotoxicity tests were performed with J774A.1 macrophages and THP-1 cell derived macrophages. To evaluate mechanisms of action, we analyzed cellular TNF-α, IL-12, IFN-γ, IL-10, IL-6, NO, ROS levels, arginase activity, and structural mechanisms (phagocytic and lysosomal activities) involving macrophage activation. Meglumine antimoniate and amphotericin B were used as reference drugs. It was observed that MG effectively inhibited the growth of both promastigote (IC50 5.71 µM) and amastigote-like forms (EC50 5.39 µM), with much higher selectivity indexes than the reference drugs, being more benign towards J774A.1 macrophages than meglumine antimoniate and amphotericin B, at 1631- and 70.92-fold respectively, with respect to the promastigote form. Additionally, MG proved to be even more active against intracellular amastigotes of the parasite (EC50 4.24 µM). Our results showed that antileishmania activity was associated with increased TNF-α, IL-12, NO and ROS levels, as well as decreased IL-6 and decreased arginase activity. In addition, MG induced increased phagocytic capability, and lysosomal volume in macrophages; structural parameters of microbicidal activity. Taken together, our results suggest that MG may be a promising candidate for new drug development against leishmaniasis.
Asunto(s)
Antiprotozoarios/farmacología , Ácido Gálico/análogos & derivados , Leishmania/efectos de los fármacos , Anfotericina B/farmacología , Antiprotozoarios/química , Ácido Gálico/efectos adversos , Ácido Gálico/química , Ácido Gálico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Antimoniato de Meglumina/farmacología , Estructura Molecular , Especies Reactivas de OxígenoRESUMEN
Previous studies have reported the anti-obesity effects of α, ß-Amyrin in high fat-fed mice. This study aimed to evaluate whether α, ß-Amyrin has an anti-adipogenic effect in 3T3-L1 murine adipocytes and to explore the possible underlying mechanisms. 3T3-L1 pre-adipocytes were differentiated in a medium containing insulin, dexamethasone, and 1-methyl-3-isobutylxanthine. Cytotoxicity of α, ß-Amyrin was assessed by MTT assay. Lipid content in adipocytes was determined by Oil-Red O staining. In addition, the protein expression levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding proteins alpha (C/EBPα), beta (C/EBPß), and delta (C/EBPδ) and glucose transporter 4 (GLUT4) were determined by qRT-PCR and western blot analysis. Oil-Red O staining revealed markedly reduced fat accumulation by α, ß-Amyrin (6.25-50 µg/mL) without affecting cell viability. Furthermore, our results indicate that α, ß-Amyrin can significantly suppress the adipocyte differentiation by downregulating the expression levels of adipogenesis-related key transcription factors such as PPARγ and C/EBPα, but not C/EBPß or C/EPBδ. In addition, the protein expression of membrane GLUT4 in 3T3- L1 adipocytes treated with α, ß-Amyrin was significantly higher than in control cells, indicating that α, ß-Amyrin augments glucose uptake. These findings suggest that α, ß-Amyrin exerts an anti-adipogenic effect principally via modulation of lipid and carbohydrate metabolism in 3T3-L1cells. The present in vitro findings, taken together with our earlier observation of the anti-obesity effect in vivo, suggest that α, ß-Amyrin can be developed as a new therapeutic agent for treatment and prevention of obesity.
Asunto(s)
Adipocitos/efectos de los fármacos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , PPAR gamma/metabolismo , Triterpenos Pentacíclicos/farmacología , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ácido Oleanólico/farmacología , Extractos Vegetales/farmacologíaRESUMEN
Herbal compounds rich in triterpenes are well known to regulate glucose and lipid metabolism and to have beneficial effects on metabolic disorders. The present study investigated the antiobesity properties of resin from Protium heptaphyllum (RPH) and the possible mechanisms in mice fed a high-fat diet (HFD) for 15 weeks. Mice treated with RPH showed decreases in body weight, net energy intake, abdominal fat accumulation, plasma glucose, amylase, lipase, triglycerides, and total cholesterol relative to their respective controls, which were RPH unfed. Additionally, RPH treatment, while significantly elevating the plasma level of ghrelin hormone, decreased the levels of insulin, leptin, and resistin. Besides, HFD-induced increases in plasma levels of proinflammatory mediators TNF-α, IL-6, and MCP-1 were significantly lowered by RPH. Furthermore, in vitro studies revealed that RPH could significantly inhibit the lipid accumulation in 3T3-L1 adipocytes (measured by Oil-Red O staining) at concentrations up to 50 µg/mL. These findings suggest that the antiobese potential of RPH is largely due to its modulatory effects on various hormonal and enzymatic secretions related to fat and carbohydrate metabolism and to the regulation of obesity-associated inflammation.
RESUMEN
The cytotoxicity of nine naphthoquinones (NQ) was assayed against HL-60 (leukaemia), MDA-MB-435 (melanoma), SF-295 (brain) and HCT-8 (colon), all human cancer cell lines, and peripheral blood mononuclear cells (PBMC), as representatives of normal cells, after 72h of incubation. 5-Methoxy-1,4-naphthoquinone was the most active compound, showing IC(50) values in the range of 0.31 (1.7microM) in HL-60 to 0.88microg/mL (4.7microM) in SF-295 and IC(50) of 0.69microg/mL (3.7microM) against PBMC. With the introduction of a bromo-substituent in position 2 or 3 of juglone, the IC(50) significantly decreased, regardless of the position on the NQ moiety. However, compared with juglone methyl ether, the halogen substitution decreased the activity. To further understand the mechanism underlying the cytotoxicity of 5-methoxy-1,4-naphthoquinone, studies involving DNA fragmentation, cell cycle analysis, phosphatidyl serine externalization, mitochondrial depolarization and activation of caspases 8 and 3/7 were performed in HL-60 cell line, using doxorubicin as a positive control. The results indicate that the cytotoxic 5-methoxy-1,4-naphthoquinone activates caspases 8 and 3/7 and thus induces apoptosis independent of mitochondria.