Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175984

RESUMEN

Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Ratones , Animales , Protones , Meduloblastoma/radioterapia , Caspasa 3 , Neoplasias Cerebelosas/radioterapia , Radiobiología
2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068942

RESUMEN

Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.


Asunto(s)
Nanodiamantes , Neoplasias , Humanos , Nanodiamantes/química , Tolerancia a Radiación , Supervivencia Celular , Neoplasias/radioterapia
3.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328420

RESUMEN

Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioblastoma , Adulto , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Glioblastoma/metabolismo , Humanos , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830484

RESUMEN

Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long-term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation-induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/-). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long-term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio-induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/- mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio-induced injury.


Asunto(s)
Proteínas Hedgehog/genética , Hipocampo/efectos de la radiación , Neurogénesis/genética , Receptor Patched-1/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Redes Reguladoras de Genes/efectos de la radiación , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neurogénesis/efectos de la radiación , Neuronas/metabolismo , Neuronas/efectos de la radiación , Calidad de Vida , Radiación Ionizante , Transducción de Señal/efectos de la radiación
5.
Nephrol Dial Transplant ; 34(9): 1558-1564, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476170

RESUMEN

BACKGROUND: Renal transplant patients have a high prevalence of nocturnal hypertension, and hypertension misclassification by office blood pressure (BP) is quite common in these patients. The potential impact of hypertension misclassification by office BP on hypertension management in this population has never been analysed. METHODS: We performed a longitudinal study in a cohort of 260 clinically stable renal transplant patients. In all, 785 paired office and 24-h ambulatory blood pressure monitoring (24-hABPM) measurements over a median follow-up of 3.9 years were available in the whole cohort. RESULTS: A total of 74% of patients had nocturnal hypertension (>120/70 mmHg). Average office BP and 24-hABPM remained quite stable over follow-up, as did the prevalence of nocturnal hypertension, which was 77% at the last observation. However, the global agreement between office BP and average 24 h, daytime and night-time BP was unsatisfactory (k-statistics 0.10-0.26). In 193 visits (25% of all visits) where office BP indicated the need of antihypertensive therapy institution or modification (BP >140/90 mmHg), 24-hABPM was actually normal (<130/80 mmHg), while in 94 visits (12%), 24-hABPM was in the hypertensive range while office BP was normal. Overall, in 37% of visits, office BP provided misleading therapeutic indications. CONCLUSIONS: Hypertension misclassification by office BP is a common phenomenon in stable renal transplant patients on long-term follow-up. Office BP may lead to inappropriate therapeutic decisions in over one-third of follow-up visits in these patients.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial/métodos , Hipertensión/diagnóstico , Trasplante de Riñón , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea , Femenino , Humanos , Hipertensión/epidemiología , Italia/epidemiología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Tiempo
6.
Bioelectromagnetics ; 40(1): 33-41, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30537234

RESUMEN

Exposure to extremely low frequency magnetic fields (ELF-MFs) has been associated with an increased risk of neurodegenerative disorders. The underlying mechanisms, however, are still debated. Since epigenetics play a key role in the neurodegenerative process, we investigated whether exposure to ELF-MF (50 Hz, 1 mT) might affect global DNA methylation of SH-SY5Y dopaminergic-like neuroblastoma cells. We assessed the percentage of 5-methylcytosine (5-mC) of three repetitive interspersed sequences (ALU, LINE-1, or SATα), through pyrosequencing analysis. We demonstrated that ELF exposure (up to 72 h) does not induce any change in the methylation pattern of ALU, LINE-1, and SATα in both proliferating and differentiated SH-SY5Y cells. Furthermore, when administered in combination with 1-methyl-4-phenylpyridinium (MPP+ ), a neurotoxin mimicking the Parkinson's Disease (PD) phenotype, ELF-MF exposure does not trigger any modulation in the percentage of 5-mC of the repetitive elements. Our findings demonstrate that exposure to 50-Hz MF does not affect global DNA methylation in proliferating and dopaminergic differentiated SH-SY5Y cells, either under basal culture conditions or under neurotoxic stress. Bioelectromagnetics. 40:33-41, 2019. © 2018 Bioelectromagnetics Society.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Metilación de ADN/efectos de los fármacos , Campos Magnéticos , Neurotoxinas/toxicidad , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Campos Magnéticos/efectos adversos
7.
Bioelectromagnetics ; 39(1): 3-14, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28990199

RESUMEN

Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Campos Electromagnéticos , Epigénesis Genética/efectos de la radiación , Magnetoterapia/métodos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Animales , Estimulación Encefálica Profunda , Humanos
8.
Nephrol Dial Transplant ; 31(10): 1699-705, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27466462

RESUMEN

BACKGROUND: In the USA, the increase in the prevalence of obesity in the general population has been accompanied by a marked increase in the prevalence and incidence of obesity in the dialysis population. However, secular trends of body mass index (BMI) have not been investigated in European renal registries. METHODS: We investigated the secular trend of BMI across 18 years (1994-2011) in two haemodialysis (HD) registries (Calabria in southern Italy and Emilia in northern Italy) on a total of 16 201 prevalent HD patients and in a series of 3559 incident HD patients. We compared trends in BMI for HD patients with those in the background general population of the same regions. RESULTS: The average BMI rose from 23.5 kg/m(2) in 1994 to 25.5 (+8.5%) in 2011 in the Calabria registry and from 23.7 in 1998 to 25.4 (+7.1%) in 2011 in the Emilia registry (P < 0.001). The proportion of obese patients (i.e. with BMI >30 kg/m(2)) rose from 6 to 14% in Calabria and from 6 to 16% in Emilia (P < 0.001). These patterns were fully confirmed in incident patients and were mirrored by a substantial decline in the prevalence of underweight-normal and underweight (P < 0.001) patients. Of note, the steepness of the increase in BMI in haemodialysis patients was 3.7 times more pronounced than that in the coeval, age- and sex-matched general population of Calabria and Emilia. CONCLUSIONS: In two regional haemodialysis registries in Italy a steady increase in overweight and obese patients is observed. These patterns are more pronounced than those found in the general population. If further confirmed in other European haemodialysis cohorts, these findings may have relevant public health implications.


Asunto(s)
Índice de Masa Corporal , Obesidad/epidemiología , Sobrepeso/epidemiología , Diálisis Renal/efectos adversos , Anciano , Femenino , Humanos , Incidencia , Italia/epidemiología , Masculino , Persona de Mediana Edad , Obesidad/etiología , Sobrepeso/etiología , Prevalencia , Sistema de Registros
10.
Bioelectromagnetics ; 35(8): 559-67, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25256206

RESUMEN

Studies describing the influence of radiofrequency electromagnetic fields on bone marrow cells (BMC) often lack functional data. We examined the effects of in vivo exposure to a Global System for Mobile Communications (GSM) modulated 900 MHz RF fields on BMC using two transplantation models. X-irradiated syngeneic mice were injected with BMC from either RF-field-exposed, sham-exposed or cage control mice. Twelve weeks after transplantation, no differences in thymocyte number, frequency of subpopulations and cell proliferation were found in mice receiving BMC from either group. Also, in the spleen cell number, percentages of B/T cells, B/T-cell proliferation, and interferon γ (IFN-γ) production were similar in all groups. In parallel, a mixture of BMC from congenic sham- and RF-exposed mice were co-transplanted into lymphopenic Rag2 deficient mice. BMC from RF-exposed and sham-exposed mice displayed no advantage or disadvantage when competing for the replenishment of lymphatic organs with mature lymphocytes in Rag2 deficient mice. This model revealed that BMC from sham-exposed and RF-exposed mice were less efficient than BMC from cage control mice in repopulating the thymus, an effect likely due to restraint stress. In conclusion, our results showed no effects of in vivo exposure to GSM-modulated RF-fields on the ability of bone marrow (BM) precursors to long-term reconstitute peripheral T and B cell compartments.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de la radiación , Teléfono Celular , Campos Electromagnéticos/efectos adversos , Hematopoyesis/efectos de la radiación , Ondas de Radio/efectos adversos , Animales , Células de la Médula Ósea/inmunología , Femenino , Hibridación Genética , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Timo/inmunología , Factores de Tiempo
11.
J Clin Med ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930130

RESUMEN

Background: Chronic Kidney Disease (CKD) is a complex health condition that interacts significantly with socioeconomic determinants, particularly income status and education. This study developed a simple indicator of socioeconomic status (SES), which is composed of income status and education in CKD patients, and evaluated its impact on health outcomes in this population. Methods: This study was conducted on 561 CKD patients, stages 2-5. The composite SES score was developed by combining the regression coefficients of income and education as predictors of the study endpoint in a multivariable Cox model, normalizing these coefficients to derive weights, and then using these weights to calculate an individual percentage score based on each person's income and education. The composed SES indicator was internally validated through bootstrap analysis. Over a median follow-up time of 36 months, we tracked all-cause death and non-fatal cardiovascular events. Results: Both lack of income (p = 0.020) and low educational level (p = 0.034) were independently related to the combined endpoint. Based on these covariates' regression coefficients, a composite socioeconomic score considering income and educational level was generated. In a Cox regression model, a 10% increase in this composite risk score entailed a 25% increase in the hazard ratio (HR) of the combined endpoint [HR (10% increase): 1.25], and the internally validated 95% CI ranged from 1.14 to 1.41 (p < 0.001). Conclusions: This study underscores the significant impact of a simple, bootstrap-validated composite SES indicator on CKD patients' health outcomes. These findings highlight the importance of considering education and socioeconomic factors in managing and treating CKD patients and inform future research and policy considerations for this population.

12.
Protein Pept Lett ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39021187

RESUMEN

BACKGROUND: Glycogen Storage Disease type III (GSD III) is a metabolic disorder resulting from a deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (approximately 170 kDa) with cytoplasmic localization and two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Mutations in the Agl gene, with consequent deficiency in GDE, lead to the accumulation of abnormal/toxic glycogen with shorter chains (phosphorylase limit dextrin, PLD) in skeletal and/or heart muscle and/or in the liver. Currently, there is no targeted therapy, and available treatments are symptomatic, relying on specific diets. METHODS: Enzyme Replacement Therapy (ERT) might represent a potential therapeutic strategy for GSD III. Moreover, the single-gene nature of GSD III, the subcellular localization of GDE, and the type of affected tissues represent ideal conditions for exploring gene therapy approaches. Toward this direction, we designed a synthetic, codon-optimized cDNA encoding the human GDE. RESULTS: This gene yielded high amounts of soluble, enzymatically active protein in Escherichia coli. Moreover, when transfected in Human Embryonic Kidney cells (HEK-293), it successfully encoded a functional GDE. CONCLUSION: These results suggest that our gene or protein might complement the missing function in GSD III patients, opening the door to further exploration of therapeutic approaches for this disease.

13.
Radiother Oncol ; 195: 110267, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614282

RESUMEN

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Hipocampo , Fotones , Terapia de Protones , Animales , Ratones , Apoptosis/efectos de la radiación , Terapia de Protones/efectos adversos , Hipocampo/efectos de la radiación , Meduloblastoma/radioterapia , Meduloblastoma/patología , Carcinogénesis/efectos de la radiación , Ratones Noqueados , Neoplasias Cerebelosas/radioterapia , Neoplasias Cerebelosas/patología , Encéfalo/efectos de la radiación , Receptor Patched-1/genética , Modelos Animales de Enfermedad , Protones/efectos adversos
14.
Environ Int ; 185: 108509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38492496

RESUMEN

BACKGROUND: The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Reproductive health outcomes have been identified among the priority topics to be addressed. OBJECTIVES: To evaluate the effect of RF-EMF exposure on male fertility of experimental mammals and on human sperm exposed in vitro. METHODS: Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 17, 2022. Two independent reviewers screened the studies, which were considered eligible if met the following criteria: 1) Peer-reviewed publications of sham controlled experimental studies, 2) Non-human male mammals exposed at any stage of development or human sperm exposed in vitro, 3) RF-EMF exposure within the frequency range of 100 kHz-300 GHz, including electromagnetic pulses (EMP), 4) one of the following indicators of reproductive system impairment:Two reviewers extracted study characteristics and outcome data. We assessed risk of bias (RoB) using the Office of Health Assessment and Translation (OHAT) guidelines. We categorized studies into 3 levels of overall RoB: low, some or high concern. We pooled study results in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses. For experimental animal studies, we conducted subgroup analyses for species, Specific Absorption Rate (SAR) and temperature increase. We grouped studies on human sperm exposed in vitro by the fertility status of sample donors and SAR. We assessed the certainty of the evidence using the GRADE approach after excluding studies that were rated as "high concern" for RoB. RESULTS: One-hundred and seventeen papers on animal studies and 10 papers on human sperm exposed in vitro were included in this review. Only few studies were rated as "low concern" because most studies were at RoB for exposure and/or outcome assessment. Subgrouping the experimental animal studies by species, SAR, and temperature increase partly accounted for the heterogeneity of individual studies in about one third of the meta-analyses. In no case was it possible to conduct a subgroup analysis of the few human sperm in vitro studies because there were always 1 or more groups including less than 3 studies. Among all the considered endpoints, the meta-analyses of animal studies provided evidence of adverse effects of RF-EMF exposure in all cases but the rate of infertile males and the size of the sired litters. The assessment of certainty according to the GRADE methodology assigned a moderate certainty to the reduction of pregnancy rate and to the evidence of no-effect on litter size, a low certainty to the reduction of sperm count, and a very low certainty to all the other meta-analysis results. Studies on human sperm exposed in vitro indicated a small detrimental effect of RF-EMF exposure on vitality and no-effect on DNA/chromatin alterations. According to GRADE, a very low certainty was attributed to these results. The few studies that used EMP exposure did not show effects on the outcomes. A low to very low certainty was attributed to these results. DISCUSSION: Many of the studies examined suffered of severe limitations that led to the attribution of uncertainty to the results of the meta-analyses and did not allow to draw firm conclusions on most of the endpoints. Nevertheless, the associations between RF-EMF exposure and decrease of pregnancy rate and sperm count, to which moderate and low certainty were attributed, are not negligible, also in view of the indications that in Western countries human male fertility potential seems to be progressively declining. It was beyond the scope of our systematic review to determine the shape of the dose-response relationship or to identify a minimum effective exposure level. The subgroup and the dose-response fitting analyses did not show a consistent relationship between the exposure levels and the observed effects. Notably, most studies evaluated RF-EMF exposure levels that were higher than the levels to which human populations are typically exposed, and the limits set in international guidelines. For these reasons we cannot provide suggestions to confirm or reconsider current human exposure limits. Considering the outcomes of this systematic review and taking into account the limitations found in several of the studies, we suggest that further investigations with better characterization of exposure and dosimetry including several exposure levels and blinded outcome assessment were conducted. PROTOCOL REGISTRATION: Protocols for the systematic reviews of animal studies and of human sperm in vitro studies were published in Pacchierotti et al., 2021. The former was also registered in PROSPERO (CRD42021227729 https://www.crd.york.ac.uk/prospero/display_record.php?RecordID = 227729) and the latter in Open Science Framework (OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3).


Asunto(s)
Campos Electromagnéticos , Infertilidad Masculina , Semen , Animales , Humanos , Masculino , Campos Electromagnéticos/efectos adversos , Mamíferos , Ondas de Radio/efectos adversos , Reproducción , Semen/efectos de la radiación , Infertilidad Masculina/etiología
15.
Health Phys ; 126(4): 241-248, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381972

RESUMEN

ABSTRACT: Concerns have been raised about the possibility of effects from exposure to short wavelength light (SWL), defined here as 380-550 nm, on human health. The spectral sensitivity of the human circadian timing system peaks at around 480 nm, much shorter than the peak sensitivity of daytime vision (i.e., 555 nm). Some experimental studies have demonstrated effects on the circadian timing system and on sleep from SWL exposure, especially when SWL exposure occurs in the evening or at night. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has identified a lack of consensus among public health officials regarding whether SWL from artificial sources disrupts circadian rhythm, and if so, whether SWL-disrupted circadian rhythm is associated with adverse health outcomes. Systematic reviews of studies designed to examine the effects of SWL on sleep and human health have shown conflicting results. There are many variables that can affect the outcome of these experimental studies. One of the main problems in earlier studies was the use of photometric quantities as a surrogate for SWL exposure. Additionally, the measurement of ambient light may not be an accurate measure of the amount of light impinging on the intrinsically photosensitive retinal ganglion cells, which are now known to play a major role in the human circadian timing system. Furthermore, epidemiological studies of long-term effects of chronic SWL exposure per se on human health are lacking. ICNIRP recommends that an analysis of data gaps be performed to delineate the types of studies needed, the parameters that should be addressed, and the methodology that should be applied in future studies so that a decision about the need for exposure guidelines can be made. In the meantime, ICNIRP supports some recommendations for how the quality of future studies might be improved.


Asunto(s)
Melatonina , Humanos , Ritmo Circadiano/efectos de la radiación , Sueño/efectos de la radiación
16.
Clin Kidney J ; 17(1): sfad290, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223338

RESUMEN

Background: Chronic kidney disease mineral bone disorder (CKD-MBD) is a condition characterized by alterations of calcium, phosphate, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF-23) metabolism that in turn promote bone disorders, vascular calcifications, and increase cardiovascular (CV) risk. Nephrologists' awareness of diagnostic, prognostic, and therapeutic tools to manage CKD-MBD plays a primary role in adequately preventing and managing this condition in clinical practice. Methods: A national survey (composed of 15 closed questions) was launched to inquire about the use of bone biomarkers in the management of CKD-MBD patients by nephrologists and to gain knowledge about the implementation of guideline recommendations in clinical practice. Results: One hundred and six Italian nephrologists participated in the survey for an overall response rate of about 10%. Nephrologists indicated that the laboratories of their hospitals were able to satisfy request of ionized calcium levels, 105 (99.1%) of both PTH and alkaline phosphatase (ALP), 100 (94.3%) of 25(OH)D, and 61 (57.5%) of 1.25(OH)2D; while most laboratories did not support the requests of biomarkers such as FGF-23 (intact: 88.7% and c-terminal: 93.4%), Klotho (95.3%; soluble form: 97.2%), tartrate-resistant acid phosphatase 5b (TRAP-5b) (92.5%), C-terminal telopeptide (CTX) (71.7%), and pro-collagen type 1 N-terminal pro-peptide (P1NP) (88.7%). As interesting data regarding Italian nephrologists' behavior to start treatment of secondary hyperparathyroidism (sHPT), the majority of clinicians used KDOQI guidelines (n = 55, 51.9%). In contrast, only 40 nephrologists (37.7%) relied on KDIGO guidelines, which recommended referring to values of PTH between two and nine times the upper limit of the normal range. Conclusion: Results point out a marked heterogeneity in the management of CKD-MBD by clinicians as well as a suboptimal implementation of guidelines in Italian clinical practice.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36767440

RESUMEN

The increasing exposure of the human population to radiofrequency electromagnetic fields has increased concern about its possible health effects. The aim of this systematic review is to provide an update of the state of the research on this topic, through a quantitative analysis, to assess the increased risk of tumor incidence in laboratory animals (rodents) without limitations of species, strain, sex or genotype. The review was conducted according to the PRISMA guideline and individual studies were assessed by referring to the OHAT Risk of Bias Rating Tool for Human and Animal Studies. A total of 27 studies were considered eligible for the evaluation of tumor incidence; a meta-analysis was carried out on 23 studies to assess the possible increased risk of both malignant and benign tumors onset at the systemic level or in different organs/tissues. A significant association between exposure to RF and the increased/decreased risk of cancer does not result from the meta-analysis in most of considered tissues. A significant increased/decreased risk can be numerically observed only in heart, CNS/brain, and intestine for malignant tumors. Nevertheless, the assessment of the body of evidence attributes low or inadequate evidence for an association between RF exposure and the onset of neoplasm in all tissues.


Asunto(s)
Campos Electromagnéticos , Neoplasias , Animales , Humanos , Campos Electromagnéticos/efectos adversos , Ondas de Radio/efectos adversos , Neoplasias/epidemiología , Neoplasias/etiología , Encéfalo , Incidencia
18.
Sci Total Environ ; 895: 165059, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37353034

RESUMEN

During the early stage of the COVID-19 pandemic (winter 2020), the northern part of Italy has been significantly affected by viral infection compared to the rest of the country leading the scientific community to hypothesize that airborne particulate matter (PM) could act as a carrier for the SARS-CoV-2. To address this controversial issue, we first verified and demonstrated the presence of SARS-CoV-2 RNA genome on PM2.5 samples, collected in the city of Bologna (Northern Italy) in winter 2021. Then, we employed classical molecular dynamics (MD) simulations to investigate the possible recognition mechanism(s) between a newly modelled PM2.5 fragment and the SARS-CoV-2 Spike protein. The potential molecular interaction highlighted by MD simulations suggests that the glycans covering the upper Spike protein regions would mediate the direct contact with the PM2.5 carbon core surface, while a cloud of organic and inorganic PM2.5 components surround the glycoprotein with a network of non-bonded interactions resulting in up to 4769 total contacts. Moreover, a binding free energy of -207.2 ± 3.9 kcal/mol was calculated for the PM-Spike interface through the MM/GBSA method, and structural analyses also suggested that PM attachment does not alter the protein conformational dynamics. Although the association between the PM and SARS-CoV-2 appears plausible, this simulation does not assess whether these established interactions are sufficiently stable to carry the virus in the atmosphere, or whether the virion retains its infectiousness after the transport. While these key aspects should be verified by further experimental analyses, for the first time, this pioneering study gains insights into the molecular interactions between PM and SARS-CoV-2 Spike protein and will support further research aiming at clarifying the possible relationship between PM abundance and the airborne diffusion of viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Material Particulado/análisis , Pandemias , ARN Viral , Simulación de Dinámica Molecular
19.
Environ Int ; 180: 108178, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37729852

RESUMEN

BACKGROUND: The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Within the project, 6 topics have been prioritized by an expert group, which include reproductive health outcomes. OBJECTIVES: According to the protocol published in 2021, a systematic review and meta-analyses on the adverse effects of RF-EMF exposure during pregnancy in offspring of experimental animals were conducted. METHODS: Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 8 or 17, 2022. Based on predefined selection criteria, the obtained references were screened by two independent reviewers. Studies were included if they met the following criteria: 1) original, sham controlled experimental study on non-human mammals exposed in utero, published in peer-reviewed journals, 2) the experimental RF-EMF exposure was within the frequency range 100 kHz-300 GHz, 3) the effects of RF-EMF exposure on fecundity (litter size, embryonic/fetal losses), on the offspring health at birth (decrease of weight or length, congenital malformations, changes of sex ratio) or on delayed effects (neurocognitive alterations, female infertility or early-onset cancer) were studied. Study characteristics and outcome data were extracted by two reviewers. Risk of bias (RoB) was assessed using the Office of Health Assessment and Translation (OHAT) guidelines. Study results were pooled in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses, after exclusion of studies that were rated at "high concern" for RoB. Subgroup analyses were conducted for species, Specific Absorption Rate (SAR) and temperature increase. The certainty of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. RESULTS: Eighty-eight papers could be included in this review. Effects on fecundity. The meta-analysis of studies on litter size, conducted at a whole-body average SAR of 4.92 W/kg, did not show an effect of RF-EMF exposure (MD 0.05; 95% CI -0.21 to 0.30). The meta-analysis of studies on resorbed and dead fetuses, conducted at a whole-body average SAR of 20.26 W/kg, showed a significant increase of the incidence in RF-EMF exposed animals (OR 1.84; 95% CI 1.27 to 2.66). The results were similar in the dose-response analysis. Effects on the offspring health at birth. The meta-analysis of studies on fetal weight, conducted at a whole-body average SAR of 9.83 W/kg, showed a small decrease in RF-EMF exposed animals (SMD 0.31; 95% CI 0.15 to 0.48). The meta-analysis of studies on fetal length, conducted at a whole-body average SAR of 4.55 W/kg, showed a moderate decrease in length at birth (SMD 0.45; 95% CI 0.07 to 0.83). The meta-analysis of studies on the percentage of fetuses with malformations, conducted at a whole-body average SAR of 6.75 W/kg, showed a moderate increase in RF-EMF exposed animals (SMD -0.45; 95% CI -0.68 to -0.23). The meta-analysis of studies on the incidence of litters with malformed fetuses, conducted at a whole-body average SAR of 16.63 W/kg, showed a statistically significant detrimental RF-EMF effect (OR 3.22; 95% CI 1.9 to 5.46). The results were similar in the dose-response analyses. Delayed effects on the offspring health. RF-EMF exposure was not associated with detrimental effects on brain weight (SMD 0.10; 95% CI -0.09 to 0.29) and on learning and memory functions (SMD -0.54; 95% CI -1.24 to 0.17). RF-EMF exposure was associated with a large detrimental effect on motor activity functions (SMD 0.79; 95% CI 0.21 to 1.38) and a moderate detrimental effect on motor and sensory functions (SMD -0.66; 95% CI -1.18 to -0.14). RF-EMF exposure was not associated with a decrease of the size of litters conceived by F2 female offspring (SMD 0.08; 95% CI -0.39 to 0.55). Notably, meta-analyses of neurobehavioural effects were based on few studies, which suffered of lack of independent replication deriving from only few laboratories. DISCUSSION: There was high certainty in the evidence for a lack of association of RF-EMF exposure with litter size. We attributed a moderate certainty to the evidence of a small detrimental effect on fetal weight. We also attributed a moderate certainty to the evidence of a lack of delayed effects on the offspring brain weight. For most of the other endpoints assessed by the meta-analyses, detrimental RF-EMF effects were shown, however the evidence was attributed a low or very low certainty. The body of evidence had limitations that did not allow an assessment of whether RF-EMF may affect pregnancy outcomes at exposure levels below those eliciting a well-known adverse heating impact. In conclusion, in utero RF-EMF exposure does not have a detrimental effect on fecundity and likely affects offspring health at birth, based on the meta-analysis of studies in experimental mammals on litter size and fetal weight, respectively. Regarding possible delayed effects of in utero exposure, RF-EMF probably does not affect offspring brain weight and may not decrease female offspring fertility; on the other hand, RF-EMF may have a detrimental impact on neurobehavioural functions, varying in magnitude for different endpoints, but these last findings are very uncertain. Further research is needed on the effects at birth and delayed effects with sample sizes adequate for detecting a small effect. Future studies should use standardized endpoints for testing prenatal developmental toxicity and developmental neurotoxicity (OECD TG 414 and 426), improve the description of the exposure system design and exposure conditions, conduct appropriate dosimetry characterization, blind endpoint analysis and include several exposure levels to better enable the assessment of a dose-response relationship. PROTOCOL REGISTRATION AND PUBLICATION: The protocol was published in Pacchierotti et al., 2021 and registered in PROSPERO CRD42021227746 (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=227746).


Asunto(s)
Campos Electromagnéticos , Peso Fetal , Embarazo , Animales , Femenino , Campos Electromagnéticos/efectos adversos , Reproducción , Fertilidad , Mamíferos
20.
Bioelectromagnetics ; 33(8): 652-61, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22556007

RESUMEN

Wireless local area networks are an increasing alternative to wired data networks in workplaces, homes, and public areas. Concerns about possible health effects of this type of signal, especially when exposure occurs early in life, have been raised. We examined the effects of prenatal (in utero) exposure to wireless fidelity (WiFi) signal-associated electromagnetic fields (2450 MHz center-frequency band) on T cell development and function. Pregnant mice were exposed whole body to a specific absorption rate of 4 W/kg, 2 h per day, starting 5 days after mating and ending 1 day before the expected delivery. Sham-exposed and cage control groups were used as controls. No effects on cell count, phenotype, and proliferation of thymocytes were observed. Also, spleen cell count, CD4/CD8 cell frequencies, T cell proliferation, and cytokine production were not affected by the exposure. These findings were consistently observed in the male and female offspring at early (5 weeks of age) and late (26 weeks of age) time points. Nevertheless, the expected differences associated with aging and/or gender were confirmed. In conclusion, our results do not support the hypothesis that the exposure to WiFi signals during prenatal life results in detrimental effects on the immune T cell compartment.


Asunto(s)
Feto/inmunología , Feto/efectos de la radiación , Ondas de Radio/efectos adversos , Timocitos/citología , Timocitos/efectos de la radiación , Tecnología Inalámbrica , Animales , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Citocinas/biosíntesis , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Embarazo , Timocitos/inmunología , Timocitos/metabolismo , Timo/citología , Timo/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA