Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.841
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(3): 457-466.e4, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995482

RESUMEN

Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured the neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild-type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that received their primary series recently (<3 months), distantly (6-12 months), or an additional "booster" dose, while accounting for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinees. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron, only 4-6-fold lower than wild type, suggesting enhanced cross-reactivity of neutralizing antibody responses. In addition, we find that Omicron pseudovirus infects more efficiently than other variants tested. Overall, this study highlights the importance of additional mRNA doses to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.

2.
Cell ; 184(9): 2372-2383.e9, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33743213

RESUMEN

Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Inmunidad Humoral , SARS-CoV-2/inmunología , Vacuna BNT162 , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Células HEK293 , Humanos , Mutación/genética , Curva ROC , SARS-CoV-2/genética
3.
Nat Immunol ; 23(6): 947-959, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35552540

RESUMEN

Inflammation is an important component of fibrosis but immune processes that orchestrate kidney fibrosis are not well understood. Here we apply single-cell sequencing to a mouse model of kidney fibrosis. We identify a subset of kidney tubule cells with a profibrotic-inflammatory phenotype characterized by the expression of cytokines and chemokines associated with immune cell recruitment. Receptor-ligand interaction analysis and experimental validation indicate that CXCL1 secreted by profibrotic tubules recruits CXCR2+ basophils. In mice, these basophils are an important source of interleukin-6 and recruitment of the TH17 subset of helper T cells. Genetic deletion or antibody-based depletion of basophils results in reduced renal fibrosis. Human kidney single-cell, bulk gene expression and immunostaining validate a function for basophils in patients with kidney fibrosis. Collectively, these studies identify basophils as contributors to the development of renal fibrosis and suggest that targeting these cells might be a useful clinical strategy to manage chronic kidney disease.


Asunto(s)
Basófilos , Insuficiencia Renal Crónica , Animales , Fibrosis , Humanos , Riñón/metabolismo , Túbulos Renales , Ratones , Insuficiencia Renal Crónica/metabolismo , Análisis de la Célula Individual
4.
Annu Rev Biochem ; 86: 637-657, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28471691

RESUMEN

Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with ß-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.


Asunto(s)
Membrana Celular/ultraestructura , Clatrina/química , Proteína Coat de Complejo I/química , Vesículas Cubiertas/ultraestructura , Células Eucariotas/ultraestructura , Proteínas de Unión al GTP Monoméricas/química , Transporte Activo de Núcleo Celular , Membrana Celular/química , Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Vesículas Cubiertas/química , Vesículas Cubiertas/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Evolución Molecular , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Expresión Génica , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos
5.
Nat Immunol ; 21(10): 1181-1193, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32807943

RESUMEN

Type 2 cytokine responses promote parasitic immunity and initiate tissue repair; however, they can also result in immunopathologies when not properly restricted. Although basophilia is recognized as a common feature of type 2 inflammation, the roles basophils play in regulating these responses are unknown. Here, we demonstrate that helminth-induced group 2 innate lymphoid cell (ILC2) responses are exaggerated in the absence of basophils, resulting in increased inflammation and diminished lung function. Additionally, we show that ILC2s from basophil-depleted mice express reduced amounts of the receptor for the neuropeptide neuromedin B (NMB). Critically, NMB stimulation inhibited ILC2 responses from control but not basophil-depleted mice, and basophils were sufficient to directly enhance NMB receptor expression on ILC2s. These studies suggest that basophils prime ILC2s to respond to neuron-derived signals necessary to maintain tissue integrity. Further, these data provide mechanistic insight into the functions of basophils and identify NMB as a potent inhibitor of type 2 inflammation.


Asunto(s)
Basófilos/inmunología , Pulmón/metabolismo , Linfocitos/inmunología , Nippostrongylus/fisiología , Infecciones por Strongylida/inmunología , Animales , Comunicación Celular , Células Cultivadas , Citocinas/metabolismo , Inmunidad Innata , Pulmón/patología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroquinina B/análogos & derivados , Neuroquinina B/metabolismo , Células Th2/inmunología , Triptasas/genética
6.
Cell ; 165(1): 35-44, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26997480

RESUMEN

PD-1 immune checkpoint blockade provides significant clinical benefits for melanoma patients. We analyzed the somatic mutanomes and transcriptomes of pretreatment melanoma biopsies to identify factors that may influence innate sensitivity or resistance to anti-PD-1 therapy. We find that overall high mutational loads associate with improved survival, and tumors from responding patients are enriched for mutations in the DNA repair gene BRCA2. Innately resistant tumors display a transcriptional signature (referred to as the IPRES, or innate anti-PD-1 resistance), indicating concurrent up-expression of genes involved in the regulation of mesenchymal transition, cell adhesion, extracellular matrix remodeling, angiogenesis, and wound healing. Notably, mitogen-activated protein kinase (MAPK)-targeted therapy (MAPK inhibitor) induces similar signatures in melanoma, suggesting that a non-genomic form of MAPK inhibitor resistance mediates cross-resistance to anti-PD-1 therapy. Validation of the IPRES in other independent tumor cohorts defines a transcriptomic subset across distinct types of advanced cancer. These findings suggest that attenuating the biological processes that underlie IPRES may improve anti-PD-1 response in melanoma and other cancer types.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Melanoma/tratamiento farmacológico , Metástasis de la Neoplasia/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos/efectos adversos , Proteína BRCA2/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/genética , Metástasis de la Neoplasia/genética , Nivolumab , Transcriptoma
8.
Physiol Rev ; 102(4): 1625-1667, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35378997

RESUMEN

For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.


Asunto(s)
Albúminas , Túbulos Renales Proximales , Albúminas/metabolismo , Transporte Biológico , Endocitosis/fisiología , Humanos , Túbulos Renales Proximales/metabolismo
9.
Nature ; 624(7992): 551-556, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38123805

RESUMEN

Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures1-4. When combined with the exceptionally high electrostatic control in atomically thin materials5-8, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures9-14, thus precluding real-world applications of moiré quantum materials. Here we report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure. The asymmetric moiré potential gives rise to robust electronic ratchet states, which enable hysteretic, non-volatile injection of charge carriers that control the conductance of the device. The asymmetric gating in dual-gated moiré heterostructures realizes diverse biorealistic neuromorphic functionalities, such as reconfigurable synaptic responses, spatiotemporal-based tempotrons and Bienenstock-Cooper-Munro input-specific adaptation. In this manner, the moiré synaptic transistor enables efficient compute-in-memory designs and edge hardware accelerators for artificial intelligence and machine learning.

10.
Nat Immunol ; 17(4): 356-63, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27002843

RESUMEN

Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of 'trained' innate cells that facilitate the rapid elimination of homologous or heterologous infections.


Asunto(s)
Inmunidad Adaptativa/inmunología , Citocinas/inmunología , Inmunidad Innata/inmunología , Infecciones/inmunología , Células Asesinas Naturales/inmunología , Células Mieloides/inmunología , Animales , Basófilos/inmunología , Eosinófilos/inmunología , Humanos , Macrófagos/inmunología , Mastocitos/inmunología , Monocitos/inmunología , Neutrófilos/inmunología
11.
Cell ; 155(1): 81-93, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074862

RESUMEN

The importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters' uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.


Asunto(s)
Anomalías Congénitas/genética , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Ferredoxina-NADP Reductasa/genética , Retardo del Crecimiento Fetal/genética , Ácido Fólico/metabolismo , Animales , Cruzamientos Genéticos , Metilación de ADN , Femenino , Ferredoxina-NADP Reductasa/metabolismo , Masculino , Ratones , Mutación
12.
Nature ; 603(7902): 721-727, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264796

RESUMEN

Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1-4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides 'substitutants' to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity.


Asunto(s)
Triptófano-ARNt Ligasa , Triptófano , Codón/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma , Neoplasias/inmunología , Fenilalanina , Linfocitos T , Triptófano/metabolismo , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/metabolismo
13.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38661449

RESUMEN

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Trasplante de Células Madre Hematopoyéticas , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antígenos CD34 , Busulfano/uso terapéutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Edición Génica , Células Madre Hematopoyéticas , Proteínas Represoras , Acondicionamiento Pretrasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Agonistas Mieloablativos/uso terapéutico , Europa (Continente) , América del Norte
14.
N Engl J Med ; 390(15): 1394-1407, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38587233

RESUMEN

BACKGROUND: Obesity and type 2 diabetes are prevalent in patients with heart failure with preserved ejection fraction and are characterized by a high symptom burden. No approved therapies specifically target obesity-related heart failure with preserved ejection fraction in persons with type 2 diabetes. METHODS: We randomly assigned patients who had heart failure with preserved ejection fraction, a body-mass index (the weight in kilograms divided by the square of the height in meters) of 30 or more, and type 2 diabetes to receive once-weekly semaglutide (2.4 mg) or placebo for 52 weeks. The primary end points were the change from baseline in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS; scores range from 0 to 100, with higher scores indicating fewer symptoms and physical limitations) and the change in body weight. Confirmatory secondary end points included the change in 6-minute walk distance; a hierarchical composite end point that included death, heart failure events, and differences in the change in the KCCQ-CSS and 6-minute walk distance; and the change in the C-reactive protein (CRP) level. RESULTS: A total of 616 participants underwent randomization. The mean change in the KCCQ-CSS was 13.7 points with semaglutide and 6.4 points with placebo (estimated difference, 7.3 points; 95% confidence interval [CI], 4.1 to 10.4; P<0.001), and the mean percentage change in body weight was -9.8% with semaglutide and -3.4% with placebo (estimated difference, -6.4 percentage points; 95% CI, -7.6 to -5.2; P<0.001). The results for the confirmatory secondary end points favored semaglutide over placebo (estimated between-group difference in change in 6-minute walk distance, 14.3 m [95% CI, 3.7 to 24.9; P = 0.008]; win ratio for hierarchical composite end point, 1.58 [95% CI, 1.29 to 1.94; P<0.001]; and estimated treatment ratio for change in CRP level, 0.67 [95% CI, 0.55 to 0.80; P<0.001]). Serious adverse events were reported in 55 participants (17.7%) in the semaglutide group and 88 (28.8%) in the placebo group. CONCLUSIONS: Among patients with obesity-related heart failure with preserved ejection fraction and type 2 diabetes, semaglutide led to larger reductions in heart failure-related symptoms and physical limitations and greater weight loss than placebo at 1 year. (Funded by Novo Nordisk; STEP-HFpEF DM ClinicalTrials.gov number, NCT04916470.).


Asunto(s)
Diabetes Mellitus Tipo 2 , Agonistas Receptor de Péptidos Similares al Glucagón , Péptidos Similares al Glucagón , Insuficiencia Cardíaca , Obesidad , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/etiología , Método Doble Ciego , Péptidos Similares al Glucagón/administración & dosificación , Péptidos Similares al Glucagón/efectos adversos , Péptidos Similares al Glucagón/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Volumen Sistólico , Agonistas Receptor de Péptidos Similares al Glucagón/administración & dosificación , Agonistas Receptor de Péptidos Similares al Glucagón/efectos adversos , Agonistas Receptor de Péptidos Similares al Glucagón/uso terapéutico
15.
N Engl J Med ; 390(16): 1455-1466, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38587237

RESUMEN

BACKGROUND: Empagliflozin improves cardiovascular outcomes in patients with heart failure, patients with type 2 diabetes who are at high cardiovascular risk, and patients with chronic kidney disease. The safety and efficacy of empagliflozin in patients who have had acute myocardial infarction are unknown. METHODS: In this event-driven, double-blind, randomized, placebo-controlled trial, we assigned, in a 1:1 ratio, patients who had been hospitalized for acute myocardial infarction and were at risk for heart failure to receive empagliflozin at a dose of 10 mg daily or placebo in addition to standard care within 14 days after admission. The primary end point was a composite of hospitalization for heart failure or death from any cause as assessed in a time-to-first-event analysis. RESULTS: A total of 3260 patients were assigned to receive empagliflozin and 3262 to receive placebo. During a median follow-up of 17.9 months, a first hospitalization for heart failure or death from any cause occurred in 267 patients (8.2%) in the empagliflozin group and in 298 patients (9.1%) in the placebo group, with incidence rates of 5.9 and 6.6 events, respectively, per 100 patient-years (hazard ratio, 0.90; 95% confidence interval [CI], 0.76 to 1.06; P = 0.21). With respect to the individual components of the primary end point, a first hospitalization for heart failure occurred in 118 patients (3.6%) in the empagliflozin group and in 153 patients (4.7%) in the placebo group (hazard ratio, 0.77; 95% CI, 0.60 to 0.98), and death from any cause occurred in 169 (5.2%) and 178 (5.5%), respectively (hazard ratio, 0.96; 95% CI, 0.78 to 1.19). Adverse events were consistent with the known safety profile of empagliflozin and were similar in the two trial groups. CONCLUSIONS: Among patients at increased risk for heart failure after acute myocardial infarction, treatment with empagliflozin did not lead to a significantly lower risk of a first hospitalization for heart failure or death from any cause than placebo. (Funded by Boehringer Ingelheim and Eli Lilly; EMPACT-MI ClinicalTrials.gov number, NCT04509674.).


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/efectos adversos , Método Doble Ciego , Estudios de Seguimiento , Glucósidos/uso terapéutico , Glucósidos/efectos adversos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/prevención & control , Hospitalización , Estimación de Kaplan-Meier , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/mortalidad , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Resultado del Tratamiento , Factores de Riesgo de Enfermedad Cardiaca
16.
Trends Immunol ; 45(7): 486-494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876831

RESUMEN

Immunotherapies have revolutionized the treatment of certain cancers, but challenges remain in overcoming immunotherapy resistance. Research shows that metabolic modulation of the tumor microenvironment can enhance antitumor immunity. Here, we discuss recent preclinical and clinical evidence for the efficacy of combining metabolic modifiers with immunotherapies. While this combination holds great promise, a few key areas must be addressed, which include identifying the effects of metabolic modifiers on immune cell metabolism, the putative biomarkers of therapeutic efficacy, the efficacy of modifiers on tumors harboring metabolic heterogeneity, and the potential development of resistance due to tumor reliance on alternative metabolic pathways. We propose solutions to these problems and posit that assessing these parameters is crucial for considering the potential of metabolic modifiers in sensitizing tumors to immunotherapies.


Asunto(s)
Resistencia a Antineoplásicos , Inmunoterapia , Redes y Vías Metabólicas , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Animales , Resistencia a Antineoplásicos/inmunología
17.
Immunity ; 49(4): 709-724.e8, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30291028

RESUMEN

B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins. Secreted IgD targeted basophils by interacting with the CD44-binding protein galectin-9. When engaged by antigen, basophil-bound IgD increased basophil secretion of interleukin-4 (IL-4), IL-5, and IL-13, which facilitated the generation of T follicular helper type 2 cells expressing IL-4. These germinal center T cells enhanced IgG1 and IgE but not IgG2a and IgG2b responses to the antigen initially recognized by basophil-bound IgD. In addition, IgD ligation by antigen attenuated allergic basophil degranulation induced by IgE co-ligation. Thus, IgD may link B cells with basophils to optimize humoral T helper type 2-mediated immunity against common environmental soluble antigens.


Asunto(s)
Basófilos/inmunología , Galectinas/inmunología , Receptores de Hialuranos/inmunología , Inmunoglobulina D/inmunología , Células Th2/inmunología , Animales , Basófilos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Galectinas/genética , Galectinas/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Inmunoglobulina D/metabolismo , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Interleucina-4/genética , Interleucina-4/inmunología , Interleucina-4/metabolismo , Ratones Endogámicos BALB C , Unión Proteica , Células Th2/metabolismo
18.
PLoS Biol ; 22(1): e3002444, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38261631

RESUMEN

Plants, animals, and fungi display a rich tapestry of colors. Animals, in particular, use colors in dynamic displays performed in spatially complex environments. Although current approaches for studying colors are objective and repeatable, they miss the temporal variation of color signals entirely. Here, we introduce hardware and software that provide ecologists and filmmakers the ability to accurately record animal-perceived colors in motion. Specifically, our Python codes transform photos or videos into perceivable units (quantum catches) for animals of known photoreceptor sensitivity. The plans and codes necessary for end-users to capture animal-view videos are all open source and publicly available to encourage continual community development. The camera system and the associated software package will allow ecologists to investigate how animals use colors in dynamic behavioral displays, the ways natural illumination alters perceived colors, and other questions that remained unaddressed until now due to a lack of suitable tools. Finally, it provides scientists and filmmakers with a new, empirically grounded approach for depicting the perceptual worlds of nonhuman animals.


Asunto(s)
Iluminación , Programas Informáticos , Animales , Movimiento (Física)
20.
Nature ; 598(7881): 425-428, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671135

RESUMEN

Models of terrestrial planet formation predict that the final stages of planetary assembly-lasting tens of millions of years beyond the dispersal of young protoplanetary disks-are dominated by planetary collisions. It is through these giant impacts that planets like the young Earth grow to their final mass and achieve long-term stable orbital configurations1. A key prediction is that these impacts produce debris. So far, the most compelling observational evidence for post-impact debris comes from the planetary system around the nearby 23-million-year-old A-type star HD 172555. This system shows large amounts of fine dust with an unusually steep size distribution and atypical dust composition, previously attributed to either a hypervelocity impact2,3 or a massive asteroid belt4. Here we report the spectrally resolved detection of a carbon monoxide gas ring co-orbiting with dusty debris around HD 172555 between about six and nine astronomical units-a region analogous to the outer terrestrial planet region of our Solar System. Taken together, the dust and carbon monoxide detections favour a giant impact between large, volatile-rich bodies. This suggests that planetary-scale collisions, analogous to the Moon-forming impact, can release large amounts of gas as well as debris, and that this gas is observable, providing a window into the composition of young planets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA