Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333273

RESUMEN

Polymeric organic mixed ionic-electronic conductors underpin several technologies in which their electrochemical properties are desirable. These properties, however, depend on the microstructure that develops in their aqueous operational environment. We investigated the structure of a model organic mixed ionic-electronic conductor across multiple length scales using cryogenic four-dimensional scanning transmission electron microscopy in both its dry and hydrated states. Four-dimensional scanning transmission electron microscopy allows us to identify the prevalent defects in the polymer crystalline regions and to analyse the liquid crystalline nature of the polymer. The orientation maps of the dry and hydrated polymers show that swelling-induced disorder is mostly localized in discrete regions, thereby largely preserving the liquid crystalline order. Therefore, the liquid crystalline mesostructure makes electronic transport robust to electrolyte ingress. This study demonstrates that cryogenic four-dimensional scanning transmission electron microscopy provides multiscale structural insights into complex, hierarchical structures such as polymeric organic mixed ionic-electronic conductors, even in their hydrated operating state.

2.
Nat Mater ; 22(3): 362-368, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36797383

RESUMEN

Mixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.

3.
Chem Rev ; 122(4): 4325-4355, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34902244

RESUMEN

Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.


Asunto(s)
Conductividad Eléctrica , Electrónica , Transistores Electrónicos , Técnicas Biosensibles/métodos , Transporte Iónico
4.
J Am Chem Soc ; 144(10): 4642-4656, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257589

RESUMEN

A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a µC* figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 µW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.

5.
J Am Chem Soc ; 143(36): 14795-14805, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34469688

RESUMEN

Conjugated polymers achieve redox activity in electrochemical devices by combining redox-active, electronically conducting backbones with ion-transporting side chains that can be tuned for different electrolytes. In aqueous electrolytes, redox activity can be accomplished by attaching hydrophilic side chains to the polymer backbone, which enables ionic transport and allows volumetric charging of polymer electrodes. While this approach has been beneficial for achieving fast electrochemical charging in aqueous solutions, little is known about the relationship between water uptake by the polymers during electrochemical charging and the stability and redox potentials of the electrodes, particularly for electron-transporting conjugated polymers. We find that excessive water uptake during the electrochemical charging of polymer electrodes harms the reversibility of electrochemical processes and results in irreversible swelling of the polymer. We show that small changes of the side chain composition can significantly increase the reversibility of the redox behavior of the materials in aqueous electrolytes, improving the capacity of the polymer by more than one order of magnitude. Finally, we show that tuning the local environment of the redox-active polymer by attaching hydrophilic side chains can help to reach high fractions of the theoretical capacity for single-phase electrodes in aqueous electrolytes. Our work shows the importance of chemical design strategies for achieving high electrochemical stability for conjugated polymers in aqueous electrolytes.

6.
Development ; 145(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378824

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease caused by expansion of CAG repeats in the Huntingtin gene (HTT). Neither its pathogenic mechanisms nor the normal functions of HTT are well understood. To model HD in humans, we engineered a genetic allelic series of isogenic human embryonic stem cell (hESC) lines with graded increases in CAG repeat length. Neural differentiation of these lines unveiled a novel developmental HD phenotype: the appearance of giant multinucleated telencephalic neurons at an abundance directly proportional to CAG repeat length, generated by a chromosomal instability and failed cytokinesis over multiple rounds of DNA replication. We conclude that disrupted neurogenesis during development is an important, unrecognized aspect of HD pathogenesis. To address the function of normal HTT protein we generated HTT+/- and HTT-/- lines. Surprisingly, the same phenotype emerged in HTT-/- but not HTT+/- lines. We conclude that HD is a developmental disorder characterized by chromosomal instability that impairs neurogenesis, and that HD represents a genetic dominant-negative loss of function, contrary to the prevalent gain-of-toxic-function hypothesis. The consequences of developmental alterations should be considered as a new target for HD therapies.


Asunto(s)
Inestabilidad Cromosómica , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neurogénesis/genética , Alelos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Humanos , Proteína Huntingtina/deficiencia , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/etiología , Enfermedad de Huntington/patología , Modelos Biológicos , Fenotipo , Huso Acromático/patología , Expansión de Repetición de Trinucleótido
7.
Angew Chem Int Ed Engl ; 60(17): 9368-9373, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33368944

RESUMEN

N-type conjugated polymers as the semiconducting component of organic electrochemical transistors (OECTs) are still undeveloped with respect to their p-type counterparts. Herein, we report two rigid n-type conjugated polymers bearing oligo(ethylene glycol) (OEG) side chains, PgNaN and PgNgN, which demonstrated an essentially torsion-free π-conjugated backbone. The planarity and electron-deficient rigid structures enable the resulting polymers to achieve high electron mobility in an OECT device of up to the 10-3  cm2 V-1 s-1 range, with a deep-lying LUMO energy level lower than -4.0 eV. Prominently, the polymers exhibited a high device performance with a maximum dimensionally normalized transconductance of 0.212 S cm-1 and the product of charge-carrier mobility µ and volumetric capacitance C* of 0.662±0.113 F cm-1 V-1 s-1 , which are among the highest in n-type conjugated polymers reported to date. Moreover, the polymers are synthesized via a metal-free aldol-condensation polymerization, which is beneficial to their application in bioelectronics.

8.
Angew Chem Int Ed Engl ; 60(14): 7777-7785, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33259685

RESUMEN

Donor-acceptor (D-A) polymers are promising materials for organic electrochemical transistors (OECTs), as they minimize detrimental faradaic side-reactions during OECT operation, yet their steady-state OECT performance still lags far behind their all-donor counterparts. We report three D-A polymers based on the diketopyrrolopyrrole unit that afford OECT performances similar to those of all-donor polymers, hence representing a significant improvement to the previously developed D-A copolymers. In addition to improved OECT performance, DFT simulations of the polymers and their respective hole polarons also reveal a positive correlation between hole polaron delocalization and steady-state OECT performance, providing new insights into the design of OECT materials. Importantly, we demonstrate how polaron delocalization can be tuned directly at the molecular level by selection of the building blocks comprising the polymers' conjugated backbone, thus paving the way for the development of even higher performing OECT polymers.

9.
Chem Soc Rev ; 48(6): 1596-1625, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-29697109

RESUMEN

Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

10.
JAMA ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259568

RESUMEN

This JAMA Patient Page describes the hospice model of medical care for people with terminal illness.

11.
Cereb Cortex ; 27(2): 1501-1511, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26759481

RESUMEN

In Alzheimer disease (AD), the accumulation of amyloid beta (Aß) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aß peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aß accumulation on temporal and frontal lobe dysfunction. We compared the performance of McGill-R-Thy1-APP transgenic AD rats with wild-type littermate controls on a visual discrimination task using a touchscreen operant platform. Subsequently, we conducted studies to establish the biochemical and molecular basis for the behavioral alterations. It was found that the presence of intraneuronal Aß caused a severe associative learning deficit in the AD rats. This coincided with reduced nuclear translocation and genomic occupancy of the CREB co-activator, CRTC1, and decreased production of synaptic plasticity-associated transcripts Arc, c-fos, Egr1, and Bdnf. Thus, blockade of CRTC1-dependent gene expression in the early, preplaque phase of AD-like pathology provides a molecular basis for the cognitive deficits that figure so prominently in early AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Hipocampo/metabolismo , Plasticidad Neuronal/genética , Factores de Transcripción/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Femenino , Interneuronas/metabolismo , Masculino , Neuronas/metabolismo , Ratas Transgénicas
13.
J Pastoral Care Counsel ; 69(4): 251-3, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26631525

RESUMEN

There is a growing body of literature documenting dreams, visions, and other trans-personal communications that occur as part of the dying process, often called end-of-life dreams and visions (ELDVs) or deathbed communications (DBCs). This paper describes a unique case involving distressing visions at the end of life, provides a review of existing literature around ELDVs, and will provide a framework within which to approach the patient experiencing distressing ELDVs.


Asunto(s)
Sueños/psicología , Ilusiones/psicología , Cuidado Terminal/psicología , Enfermo Terminal/psicología , Anciano , Resultado Fatal , Humanos , Neoplasias Pulmonares/psicología , Masculino
14.
J Pain Symptom Manage ; 67(1): e94-e98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37666369

RESUMEN

Requests for perimortem gamete procurement (PGP) typically arise by a surrogate decision maker after the unexpected death or incapacitation of a reproductive-aged individual. Palliative care clinicians should have a working knowledge of the medical, ethical, and practical considerations pertaining to such requests. In this paper, we describe a case in which the PGP request originated from an incapacitated patient's parents. We review the technologies associated with PGP and posthumous assisted reproduction (PAR) and discuss the ethical and legal issues involved in such cases, including recent position statements from national and international reproductive health groups. Finally, we provider readers with a stepwise approach for considering requests for PGP.


Asunto(s)
Cuidados Paliativos , Concepción Póstuma , Humanos , Adulto , Células Germinativas
15.
Adv Mater ; 36(15): e2310157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198654

RESUMEN

Operational stability underpins the successful application of organic mixed ionic-electronic conductors (OMIECs) in a wide range of fields, including biosensing, neuromorphic computing, and wearable electronics. In this work, both the operation and stability of a p-type OMIEC material of various molecular weights are investigated. Electrochemical transistor measurements reveal that device operation is very stable for at least 300 charging/discharging cycles independent of molecular weight, provided the charge density is kept below the threshold where strong charge-charge interactions become likely. When electrochemically charged to higher charge densities, an increase in device hysteresis and a decrease in conductivity due to a drop in the hole mobility arising from long-range microstructural disruptions are observed. By employing operando X-ray scattering techniques, two regimes of polaron-induced structural changes are found: 1) polaron-induced structural ordering at low carrier densities, and 2) irreversible structural disordering that disrupts charge transport at high carrier densities, where charge-charge interactions are significant. These operando measurements also reveal that the transfer curve hysteresis at high carrier densities is accompanied by an analogous structural hysteresis, providing a microstructural basis for such instabilities. This work provides a mechanistic understanding of the structural dynamics and material instabilities of OMIEC materials during device operation.

16.
Chem Mater ; 36(4): 1841-1854, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38435047

RESUMEN

Organic electrochemical transistors (OECTs) are signal transducers offering high amplification, which makes them particularly advantageous for detecting weak biological signals. While OECTs typically operate with aqueous electrolytes, those employing solid-like gels as the dielectric layer can be excellent candidates for constructing wearable electrophysiology probes. Despite their potential, the impact of the gel electrolyte type and composition on the operation of the OECT and the associated device design considerations for optimal performance with a chosen electrolyte have remained ambiguous. In this work, we investigate the influence of three types of gel electrolytes-hydrogels, eutectogels, and iongels, each with varying compositions on the performance of OECTs. Our findings highlight the superiority of the eutectogel electrolyte, which comprises poly(glycerol 1,3-diglycerolate diacrylate) as the polymer matrix and choline chloride in combination with 1,3-propanediol deep eutectic solvent as the ionic component. This eutectogel electrolyte outperforms hydrogel and iongel counterparts of equivalent dimensions, yielding the most favorable transient and steady-state performance for both p-type depletion and p-type/n-type enhancement mode transistors gated with silver/silver chloride (Ag/AgCl). Furthermore, the eutectogel-integrated enhancement mode OECTs exhibit exceptional operational stability, reflected in the absence of signal-to-noise ratio (SNR) variation in the simulated electrocardiogram (ECG) recordings conducted continuously over a period of 5 h, as well as daily measurements spanning 30 days. Eutectogel-based OECTs also exhibit higher ECG signal amplitudes and SNR than their counterparts, utilizing the commercially available hydrogel, which is the most common electrolyte for cutaneous electrodes. These findings underscore the potential of eutectogels as a semisolid electrolyte for OECTs, particularly in applications demanding robust and prolonged physiological signal monitoring.

17.
bioRxiv ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39345453

RESUMEN

During persistent antigen stimulation, PD-1 + CD8 T cells are maintained by progenitor exhausted PD-1 + TCF-1 + CD8 T cells (Tpex). Tpex respond to PD-1 blockade, and regulation of Tpex differentiation into more functional Tex is of major interest for cancer immunotherapies. Tpex express high levels of Inducible Costimulator (ICOS), but the role of ICOS for PD-1 + CD8 T cell responses has not been addressed. In chronic infection, ICOS-deficiency increased both number and quality of virus-specific CD8 T cells, with accumulation of effector-like Tex due to enhanced survival. Mechanistically, loss of ICOS signaling potentiated FoxO1 activity and memory-like features of Tpex. In mice with established chronic infection, ICOS-Ligand blockade resulted in expansion of effector-like Tex and reduction in viral load. In a mouse model of hepatocellular carcinoma, ICOS inhibition improved cytokine production by tumor-specific PD-1 + CD8 T cells and delayed tumor growth. Overall, we show that ICOS limits CD8 T cell responses during chronic antigen exposure.

18.
Adv Mater ; : e2313121, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554042

RESUMEN

Introducing ethylene glycol (EG) side chains to a conjugated polymer backbone is a well-established synthetic strategy for designing organic mixed ion-electron conductors (OMIECs). However, the impact that film swelling has on mixed conduction properties has yet to be scoped, particularly for electron-transporting (n-type) OMIECs. Here, the authors investigate the effect of the length of branched EG chains on mixed charge transport of n-type OMIECs based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bithiophene backbone. Atomic force microscopy (AFM), grazing-incidence wide-angle X-ray scattering (GIWAXS), and scanning tunneling microscopy (STM) are used to establish the similarities between the common-backbone films in dry conditions. Electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and in situ GIWAXS measurements reveal stark changes in film swelling properties and microstructure during electrochemical doping, depending on the side chain length. It is found that even in the loss of the crystallite content upon contact with the aqueous electrolyte, the films can effectively transport charges and that it is rather the high water content that harms the electronic interconnectivity within the OMIEC films. These results highlight the importance of controlling water uptake in the films to impede charge transport in n-type electrochemical devices.

19.
Nat Commun ; 15(1): 6499, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090103

RESUMEN

Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric­OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.

20.
Adv Mater ; 36(31): e2308823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38531078

RESUMEN

Organic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast n-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione). The device demonstrated fast normalized transient speed of 0.56 ± 0.17 ms um-2 and excellent long-term stability in aqueous electrolytes, with no significant drop in its doping current after 50 000 successive doping/dedoping cycles and 2-month storage at ambient conditions. These unique characteristics make this polymer especially suitable for bioelectronics, such as being used as a pull-down channel in a complementary inverter for long-term stable detection of electrophysiological signals. Moreover, the developed device shows a reversible anti-ambipolar behavior, enabling reconfigurable electronics to be realized using a single material. These results go beyond the conventional OECT and demonstrate the potential of OECTs to exhibit dynamically configurable functionalities for next-generation reconfigurable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA