Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Nature ; 564(7736): 439-443, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30405246

RESUMEN

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Diseño de Fármacos , Proteínas de la Membrana/agonistas , Animales , Bencimidazoles/administración & dosificación , Bencimidazoles/uso terapéutico , Humanos , Ligandos , Proteínas de la Membrana/inmunología , Ratones , Modelos Moleculares , Nucleótidos Cíclicos/metabolismo
3.
Oecologia ; 203(1-2): 13-25, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689603

RESUMEN

Shelter building caterpillars act as ecosystem engineers by creating and maintaining leaf shelters, which are then colonized by other arthropods. Foliage quality has been shown to influence initial colonization by shelter-building caterpillars. However, the effects of plant quality on the interactions between ecosystem engineers and their communities have yet to be studied at the whole plant level. We examined how leaf tying caterpillars, as ecosystem engineers, impact arthropod communities on Quercus alba (white oak), and the modifying effect of foliage quality on these interactions. We removed all leaf tying caterpillars and leaf ties on 35 Q. alba saplings during the season when leaf tying caterpillars were active (June-September), and compared these leaf tie removal trees to 35 control trees whose leaf ties were left intact. Removal of these ecosystem engineers had no impact on overall arthropod species richness, but reduced species diversity, and overall arthropod abundance and that of most guilds, and changed the structure of the arthropod community as the season progressed. There was an increase in plant-level species richness with increasing number of leaf ties, consistent with Habitat Diversity Hypothesis. In turn, total arthropod density, and that of both leaf tying caterpillars and free-feeding caterpillars were affected by foliar tannin and nitrogen concentrations, and leaf water content. The engineering effect was greatest on low quality plants, consistent with the Stress-Gradient Hypothesis. Our results demonstrate that interactions between ecosystem engineering and plant quality together determine community structure of arthropods on Q. alba in Missouri.


Asunto(s)
Artrópodos , Quercus , Animales , Ecosistema , Hojas de la Planta , Plantas
4.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35243726

RESUMEN

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Asunto(s)
Artrópodos , Animales , Biodiversidad , Cambio Climático , Ecosistema , Hojas de la Planta
5.
Mol Cell ; 56(4): 481-95, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25459880

RESUMEN

Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.


Asunto(s)
Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Animales , Caspasa 8/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Técnicas de Sustitución del Gen , Células HT29 , Humanos , Ratones , Ratones Transgénicos , Células 3T3 NIH , Necrosis/enzimología , Proteínas de Complejo Poro Nuclear/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores
6.
Oecologia ; 196(2): 427-439, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33970331

RESUMEN

Wood-boring beetle larvae act as ecosystem engineers by creating stem cavities that are used secondarily as nests by many arboreal ant species. Understanding the heterogeneity and distribution of available cavities and their use by ants is therefore key to understanding arboreal ant community assembly and diversity. Our goals were to quantify the abundance and diversity of beetle-produced cavity resources in a tropical canopy, reveal how ants use these resources, and determine which characteristics of the cavity resource contribute to ant use. We dissected branches from six common tree species in the Brazilian Cerrado savanna, measuring cavity characteristics and identifying the occupants. We sampled 2310 individual cavities, 576 of which were used as nests by 25 arboreal ant species. We found significant differences among tree species in the proportion of stem length bored by beetles, the number of cavities per stem length, average entrance-hole size, and the distribution of cavity volumes. The likelihood that a cavity was occupied was greater for cavities with larger entrance-hole sizes and larger volumes. In particular, there was a strong positive correlation between mean head diameters of ant species and the mean entrance-hole diameter of the cavities occupied by those ant species. Wood-boring beetles contribute to the structuring of the Cerrado ant community by differentially attacking the available tree species. In so doing, the beetles provide a wide range of entrance-hole sizes which ant species partition based on their body size, and large volume cavities that ants appear to prefer.


Asunto(s)
Hormigas , Escarabajos , Animales , Brasil , Ecosistema , Árboles , Madera
7.
Oecologia ; 194(1-2): 151-163, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32909091

RESUMEN

Ecologically dominant species can shape the assembly of ecological communities via altering competitive outcomes. Moreover, these effects may be amplified under limited niche differentiation. Nevertheless, the influences of ecological dominance and niche differentiation on assembly are rarely considered together. Here, we provide a novel examination of dominance in a diverse arboreal ant community, defining dominance by the prevalent usage of nesting resources and addressing how it influences community assembly. We first used a series of quantitative observational and experimental studies to address the natural nesting ecology, colony incidence on surveyed trees, and level of dominance over newly available nesting resources by our focal species, Cephalotes pusillus. The experimental studies were then used further to examine whether C. pusillus shapes assembly via an influence on cavity usage by co-occurring species. C. pusillus was confirmed as a dominant user of cavity nesting resources, with highly generalized nesting ecology, occupying about 50% of the trees within the focal system, and accounting for more than a third of new cavity occupation in experiments. Our experiments showed further that the presence of C. pusillus was associated with modest effects on species richness, but significant decreases in cavity-occupation levels and significant shifts in the entrance-size usage by co-occurring species. These results indicate that C. pusillus, as a dominant user of nesting resources, shapes assembly at multiple levels. Broadly, our findings highlight that complex interactions between a dominant species and the resource-usage patterns of other species can underlie species assembly in diverse ecological communities.


Asunto(s)
Hormigas , Animales , Ecosistema , Árboles
8.
Ecol Lett ; 22(12): 2151-2167, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31631502

RESUMEN

A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri-trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri-trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species. The other has focused on bottom-up and top-down controls over the distribution of biomass across trophic levels and other ecosystem-level variables. Here, we propose pathways to bridge these two long-standing perspectives. We argue that an expanded theory of tri-trophic interactions (TTIs) can unify our understanding of biological processes across scales and levels of organisation, ranging from species evolution and pairwise interactions to community structure and ecosystem function. To do so requires addressing how community structure and ecosystem function arise as emergent properties of component TTIs, and, in turn, how species traits and TTIs are shaped by the ecosystem processes and the abiotic environment in which they are embedded. We conclude that novel insights will come from applying tri-trophic theory systematically across all levels of biological organisation.


Asunto(s)
Ecosistema , Cadena Alimentaria , Biomasa , Ecología
9.
Ophthalmology ; 126(1): 29-37, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945799

RESUMEN

OBJECTIVE: To compare cataract surgery with implantation of a Schlemm canal microstent with cataract surgery alone for the reduction of intraocular pressure (IOP) and medication use after 24 months. DESIGN: Prospective, multicenter, single-masked, randomized controlled trial. PARTICIPANTS: Subjects with concomitant primary open-angle glaucoma (POAG), visually significant cataract, and washed-out modified diurnal IOP (MDIOP) between 22 and 34 mmHg. METHODS: Subjects were randomized 2:1 to receive a single Hydrus Microstent (Ivantis, Inc, Irvine, CA) in the Schlemm canal or no stent after uncomplicated phacoemulsification. Comprehensive eye examinations were conducted 1 day, 1 week, and 1, 3, 6, 12, 18, and 24 months postoperatively. Medication washout and MDIOP measurement were repeated at 12 and 24 months. MAIN OUTCOME MEASURES: The primary and secondary effectiveness end points were the proportion of subjects demonstrating a 20% or greater reduction in unmedicated MDIOP and change in mean MDIOP from baseline at 24 months, respectively. Hypotensive medication use was tracked throughout the course of follow-up. Safety measures included the frequency of surgical complications and adverse events. RESULTS: A total of 369 eyes were randomized after phacoemulsification to Hydrus Microstent (HMS) and 187 to no microstent (NMS). At 24 months, unmedicated MDIOP was reduced by ≥20% in 77.3% of HMS group eyes and in 57.8% of NMS group eyes (difference = 19.5%, 95% confidence interval [CI] 11.2%-27.8%, P < 0.001). The mean reduction in 24-month unmedicated MDIOP was -7.6±4.1 mmHg (mean ± standard deviation) in the HMS group and -5.3±3.9 mmHg in the NMS group (difference = -2.3 mmHg; 95% CI, -3.0 to -1.6; P < 0.001). The mean number of medications was reduced from 1.7±0.9 at baseline to 0.3±0.8 at 24 months in the HMS group and from 1.7±0.9 to 0.7±0.9 in the NMS group (difference = -0.4 medications; P < 0.001). There were no serious ocular adverse events related to the microstent, and no significant differences in safety parameters between the 2 groups. CONCLUSIONS: This 24-month multicenter randomized controlled trial demonstrated superior reduction in MDIOP and medication use among subjects with mild-to-moderate POAG who received a Schlemm canal microstent combined with phacoemulsification compared with phacoemulsification alone.


Asunto(s)
Catarata/etiología , Glaucoma de Ángulo Abierto/cirugía , Presión Intraocular/fisiología , Limbo de la Córnea/cirugía , Facoemulsificación/métodos , Stents , Anciano , Anciano de 80 o más Años , Antihipertensivos/administración & dosificación , Humor Acuoso/fisiología , Catarata/fisiopatología , Femenino , Estudios de Seguimiento , Glaucoma de Ángulo Abierto/fisiopatología , Gonioscopía , Humanos , Implantación de Lentes Intraoculares , Masculino , Estudios Prospectivos , Implantación de Prótesis , Método Simple Ciego , Tonometría Ocular , Agudeza Visual
10.
Proc Natl Acad Sci U S A ; 112(2): 442-7, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548168

RESUMEN

Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.


Asunto(s)
Dieta , Herbivoria/fisiología , Insectos/fisiología , Animales , Biodiversidad , Ecosistema , Especificidad del Huésped , Insectos/clasificación , Lepidópteros/clasificación , Lepidópteros/fisiología , Modelos Biológicos , Filogenia
11.
Proc Biol Sci ; 283(1843)2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27881755

RESUMEN

Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization.


Asunto(s)
Evolución Biológica , Ecosistema , Extinción Biológica , Simbiosis , Animales , Modelos Biológicos
12.
Ecology ; 97(11): 3176-3183, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870051

RESUMEN

Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition.


Asunto(s)
Ecosistema , Piper/química , Piper/fisiología , Filogenia , Especificidad de la Especie
13.
Ecology ; 97(11): 2939-2951, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870033

RESUMEN

Fifty years ago, Ehrlich and Raven proposed that insect herbivores have driven much of plant speciation, particularly at tropical latitudes. There have been no explicit tests of their hypotheses. Indeed there were no proposed mechanisms either at the time or since by which herbivores might generate new plant species. Here we outline two main classes of mechanisms, prezygotic and postzygotic, with a number of scenarios in each by which herbivore-driven changes in host plant secondary chemistry might lead to new plant lineage production. The former apply mainly to a sympatric model of speciation while the latter apply to a parapatric or allopatric model. Our review suggests that the steps of each mechanism are known to occur individually in many different systems, but no scenario has been thoroughly investigated in any one system. Nevertheless, studies of Dalechampia and its herbivores and pollinators, and patterns of defense tradeoffs in trees on different soil types in the Peruvian Amazon provide evidence consistent with the original hypotheses of Ehrlich and Raven. For herbivores to drive sympatric speciation, our findings suggest that interactions with both their herbivores and their pollinators should be considered. In contrast, herbivores may drive speciation allopatrically without any influence by pollinators. Finally, there is evidence that these mechanisms are more likely to occur at low latitudes and thus more likely to produce new species in the tropics. The mechanisms we outline provide a predictive framework for further study of the general role that herbivores play in diversification of their host plants.


Asunto(s)
Especiación Genética , Herbivoria/fisiología , Insectos/fisiología , Modelos Biológicos , Plantas/genética , Animales , Fenómenos Fisiológicos de las Plantas , Polinización/genética , Polinización/fisiología
14.
Oecologia ; 181(4): 1199-208, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27129320

RESUMEN

Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.


Asunto(s)
Biodiversidad , Herbivoria , Ecosistema , Bosques , Plantas
15.
Ecology ; 96(1): 231-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26236908

RESUMEN

How environmental contexts shape the strength of species interactions, and their influence on community structure, remains a key focus for the field of community ecology. In particular, the extent to which local competitive interactions impact community structure, and whether this differs across contexts, persists as a general issue that is unresolved across a broad range of animal systems. Studies of arboreal ants have shown that competitive interactions over carbon-rich exudates from extrafloral nectaries (EFNs) and homopteran aggregations can have positive and negative effects on the local abundances of individual species. Nevertheless, it is still unclear the extent to which these local effects scale to community-level effects. Here we address the role of food from extrafloral nectaries on the structure of arboreal ant communities in a savanna of central Brazil. We did this with a combination of a diversity survey across tree species with and without EFNs, a repeated survey at times of peak EFN activity, and testing of our survey findings with two experimental manipulations of nectar availability that also provided supplementary nesting cavities. Species richness, but not composition, differed significantly between trees with and without EFNs. However, trees with EFNs had, on average, only 9% more species than those without EFNs. Furthermore, ant species richness did not differ significantly between periods of high and low EFN activity. Although nectar supplementation significantly affected nest occupation rates, this difference was seen solely in. the experiment with a massive supply of nectar and there was no effect on total ant richness or identity of the focal assemblages. Our findings suggest that the effects of extrafloral nectar on the abundances of arboreal ants at local scales do not scale to a strong structuring force at the community level. We suggest that this is most likely due to a lack of specificity of community members for EFN tree species, and the diffuse temporal and spatial nature of the availability of active EFNs. These properties mean that observable short-lived activity and competition over particular EFNs does not ultimately drive lasting changes in the associated assemblage of species, and therefore, the community as a whole.


Asunto(s)
Hormigas , Conducta Competitiva , Ecosistema , Néctar de las Plantas , Árboles , Animales , Clima Tropical
16.
Ecology ; 96(4): 1052-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26230025

RESUMEN

Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.


Asunto(s)
Ecosistema , Herbivoria , Especies Introducidas , Lonicera/clasificación , Animales , Missouri , Especificidad de la Especie , Vertebrados
17.
Bioorg Med Chem Lett ; 25(14): 2739-43, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26022841

RESUMEN

Nod-like receptors (NLRs) are cytoplasmic pattern recognition receptors that are promising targets for the development of anti-inflammatory therapeutics. Drug discovery efforts targeting NLRs have been hampered by their inherent tendency to form aggregates making protein generation and the development of screening assays very challenging. Herein we report the results of an HTS screen of NLR family member NLRP1 (NLR family, pyrin domain-containing 1) which was achieved through the large scale generation of recombinant GST-His-Thrombin-NLRP1 protein. The screen led to the identification of a diverse set of ATP competitive inhibitors with micromolar potencies. Activity of these hits was confirmed in a FP binding assay, and two homology models were employed to predict the possible binding mode of the leading series and facilitate further lead-optimization. These results highlight a promising strategy for the identification of inhibitors of NLR family members which are rapidly emerging as key drivers of inflammation in human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Adenosina Trifosfato/química , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Inflamasomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Sitios de Unión , Unión Competitiva , Ensayos Analíticos de Alto Rendimiento , Humanos , Simulación del Acoplamiento Molecular , Proteínas NLR , Unión Proteica , Estructura Terciaria de Proteína , Pirazoles/química , Pirazoles/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Relación Estructura-Actividad
18.
Bioorg Med Chem ; 23(21): 7000-6, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26455654

RESUMEN

Receptor interacting protein 2 (RIP2) is an intracellular kinase and key signaling partner for the pattern recognition receptors NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins 1 and 2). As such, RIP2 represents an attractive target to probe the role of these pathways in disease. In an effort to design potent and selective inhibitors of RIP2 we established a crystallographic system and determined the structure of the RIP2 kinase domain in an apo form and also in complex with multiple inhibitors including AMP-PCP (ß,γ-Methyleneadenosine 5'-triphosphate, a non-hydrolysable adenosine triphosphate mimic) and structurally diverse ATP competitive chemotypes identified via a high-throughput screening campaign. These structures represent the first set of diverse RIP2-inhibitor co-crystal structures and demonstrate that the protein possesses the ability to adopt multiple DFG-in as well as DFG-out and C-helix out conformations. These structures reveal key protein-inhibitor structural insights and serve as the foundation for establishing a robust structure-based drug design effort to identify both potent and highly selective inhibitors of RIP2 kinase.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Inhibidores de Proteínas Quinasas/química , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Concentración 50 Inhibidora , Cinética , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(31): 12616-20, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802664

RESUMEN

Increases in species diversity and density from higher to lower latitudes are well documented. Nevertheless, the consequences of these changes in diversity for structuring ecological communities and influencing biotic evolution are largely unknown. It is widely believed that this increase in species diversity is associated with increased intensity of ecological interactions closer to the equator. For plant-herbivore interactions in particular, the predictions are that, at lower latitudes, plants will be attacked by more individual herbivores, more herbivore species, and more specialized herbivores and, therefore, will suffer greater damage. We used a large-scale latitudinal transect from Mexico to Bolivia to quantify changes in leaf damage, diversity, and abundance of lepidopteran larvae on two widely distributed host species of the genus Piper (Piperaceae). We show that both density and species richness of herbivores were highest at the equator and decreased with increasing latitude, both northward and southward. Contrary to expectation, however, this increase in herbivore diversity was attributable to the addition of generalist not specialist species. Finally, and again contrary to expectation, the increase in herbivore density with decreasing latitude did not produce a corresponding damage gradient. We propose that the lack of a latitudinal concordance between increases in herbivore density and diversity with decreasing latitude, and the resulting herbivore damage, supports the hypothesis of better plant antiherbivore defenses at lower latitudes. Furthermore, the changes in the relative abundance of generalist vs. specialist species suggest that the nature of the selective pressure is intrinsically different between higher and lower latitudes.


Asunto(s)
Biodiversidad , Lepidópteros/fisiología , Animales , Bolivia , Larva , México
20.
J Biol Chem ; 288(43): 31268-79, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24019532

RESUMEN

Toll-like receptor (TLR) signaling is triggered by pathogen-associated molecular patterns that mediate well established cytokine-driven pathways, activating NF-κB together with IRF3/IRF7. In addition, TLR3 drives caspase 8-regulated programmed cell death pathways reminiscent of TNF family death receptor signaling. We find that inhibition or elimination of caspase 8 during stimulation of TLR2, TLR3, TLR4, TLR5, or TLR9 results in receptor interacting protein (RIP) 3 kinase-dependent programmed necrosis that occurs through either TIR domain-containing adapter-inducing interferon-ß (TRIF) or MyD88 signal transduction. TLR3 or TLR4 directly activates programmed necrosis through a RIP homotypic interaction motif-dependent association of TRIF with RIP3 kinase (also called RIPK3). In fibroblasts, this pathway proceeds independent of RIP1 or its kinase activity, but it remains dependent on mixed lineage kinase domain-like protein (MLKL) downstream of RIP3 kinase. Here, we describe two small molecule RIP3 kinase inhibitors and employ them to demonstrate the common requirement for RIP3 kinase in programmed necrosis induced by RIP1-RIP3, DAI-RIP3, and TRIF-RIP3 complexes. Cell fate decisions following TLR signaling parallel death receptor signaling and rely on caspase 8 to suppress RIP3-dependent programmed necrosis whether initiated directly by a TRIF-RIP3-MLKL pathway or indirectly via TNF activation and the RIP1-RIP3-MLKL necroptosis pathway.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Receptor Toll-Like 3/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Glicoproteínas/genética , Glicoproteínas/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Células 3T3 NIH , Necrosis/genética , Necrosis/metabolismo , Necrosis/patología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptor Toll-Like 3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA