Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunol Rev ; 302(1): 163-183, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096076

RESUMEN

Rheumatoid arthritis is an immune-mediated inflammatory disease in which fibroblasts contribute to both joint damage and inflammation. Fibroblasts are a major cell constituent of the lining of the joint cavity called the synovial membrane. Under resting conditions, fibroblasts have an important role in maintaining joint homeostasis, producing extracellular matrix and joint lubricants. In contrast, during joint inflammation, fibroblasts contribute to disease pathology by producing pathogenic levels of inflammatory mediators that drive the recruitment and retention of inflammatory cells within the joint. Recent advances in single-cell profiling techniques have transformed our ability to examine fibroblast biology, leading to the identification of specific fibroblast subsets, defining a previously underappreciated heterogeneity of disease-associated fibroblast populations. These studies are challenging the previously held dogma that fibroblasts are homogeneous and are providing unique insights into their role in inflammatory joint pathology. In this review, we discuss the recent advances in our understanding of how fibroblast heterogeneity contributes to joint pathology in rheumatoid arthritis. Finally, we address how these insights could lead to the development of novel therapies that directly target selective populations of fibroblasts in the future.


Asunto(s)
Artritis Reumatoide , Membrana Sinovial , Fibroblastos , Humanos , Inflamación , Mediadores de Inflamación
2.
Front Cell Dev Biol ; 9: 635102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33768093

RESUMEN

The inappropriate accumulation and activation of leukocytes is a shared pathological feature of immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Cellular accumulation is therefore an attractive target for therapeutic intervention. However, attempts to modulate leukocyte entry and exit from the joint have proven unsuccessful to date, indicating that gaps in our knowledge remain. Technological advancements are now allowing real-time tracking of leukocyte movement through arthritic joints or in vitro joint constructs. Coupling this technology with improvements in analyzing the cellular composition, location and interactions of leukocytes with neighboring cells has increased our understanding of the temporal dynamics and molecular mechanisms underpinning pathological accumulation of leukocytes in arthritic joints. In this review, we explore our current understanding of the mechanisms leading to inappropriate leukocyte trafficking in inflammatory arthritis, and how these evolve with disease progression. Moreover, we highlight the advances in imaging of human and murine joints, along with multi-cellular ex vivo joint constructs that have led to our current knowledge base.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA