Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38610090

RESUMEN

The impact of action video games on reading performance has been already demonstrated in individuals with and without neurodevelopmental disorders. The combination of action video games and posterior parietal cortex neuromodulation by a transcranial random noise stimulation could enhance brain plasticity, improving attentional control and reading skills also in adults with developmental dyslexia. In a double blind randomized controlled trial, 20 young adult nonaction video game players with developmental dyslexia were trained for 15 h with action video games. Half of the participants were stimulated with bilateral transcranial random noise stimulation on the posterior parietal cortex during the action video game training, whereas the others were in the placebo (i.e. sham) condition. Word text reading, pseudowords decoding, and temporal attention (attentional blink), as well as electroencephalographic activity during the attentional blink, were measured before and after the training. The action video game + transcranial random noise stimulation group showed temporal attention, word text reading, and pseudoword decoding enhancements and P300 amplitude brain potential changes. The enhancement in temporal attention performance was related with the efficiency in pseudoword decoding improvement. Our results demonstrate that the combination of action video game training with parietal neuromodulation increases the efficiency of visual attention deployment, probably reshaping goal-directed and stimulus-driven fronto-parietal attentional networks interplay in young adults with neurodevelopmental conditions.


Asunto(s)
Parpadeo Atencional , Dislexia , Juegos de Video , Adulto Joven , Humanos , Lectura , Lóbulo Parietal , Dislexia/terapia
2.
Neurosci Biobehav Rev ; 164: 105795, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977116

RESUMEN

Multivariate pattern analysis (MVPA) of electroencephalographic (EEG) data represents a revolutionary approach to investigate how the brain encodes information. By considering complex interactions among spatio-temporal features at the individual level, MVPA overcomes the limitations of univariate techniques, which often fail to account for the significant inter- and intra-individual neural variability. This is particularly relevant when studying clinical populations, and therefore MVPA of EEG data has recently started to be employed as a tool to study cognition in brain disorders. Here, we review the insights offered by this methodology in the study of anomalous patterns of neural activity in conditions such as autism, ADHD, schizophrenia, dyslexia, neurological and neurodegenerative disorders, within different cognitive domains (perception, attention, memory, consciousness). Despite potential drawbacks that should be attentively addressed, these studies reveal a peculiar sensitivity of MVPA in unveiling dysfunctional and compensatory neurocognitive dynamics of information processing, which often remain blind to traditional univariate approaches. Such higher sensitivity in characterizing individual neurocognitive profiles can provide unique opportunities to optimise assessment and promote personalised interventions.


Asunto(s)
Electroencefalografía , Humanos , Análisis Multivariante , Encéfalo/fisiopatología , Encéfalo/fisiología , Trastornos Mentales/fisiopatología , Cognición/fisiología , Trastornos del Neurodesarrollo/fisiopatología
3.
Cortex ; 177: 84-99, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848652

RESUMEN

The visual system operates rhythmically, through timely coordinated perceptual and attentional processes, involving coexisting patterns in the alpha range (7-13 Hz) at ∼10 Hz, and theta (3-6 Hz) range, respectively. Here we aimed to disambiguate whether variations in task requirements, in terms of attentional demand and side of target presentation, might influence the occurrence of either perceptual or attentional components in behavioral visual performance, also uncovering possible differences in the sampling mechanisms of the two cerebral hemispheres. To this aim, visuospatial performance was densely sampled in two versions of a visual detection task where the side of target presentation was fixed (Task 1), with participants monitoring one single hemifield, or randomly varying across trials, with participants monitoring both hemifields simultaneously (Task 2). Performance was analyzed through spectral decomposition, to reveal behavioral oscillatory patterns. For Task 1, when attentional resources where focused on one hemifield only, the results revealed an oscillatory pattern fluctuating at ∼10 Hz and ∼6-9 Hz, for stimuli presented to the left and the right hemifield, respectively, possibly representing a perceptual sampling mechanism with different efficiency within the left and the right hemispheres. For Task 2, when attentional resources were simultaneously deployed to the two hemifields, a ∼5 Hz rhythm emerged both for stimuli presented to the left and the right, reflecting an attentional sampling process, equally supported by the two hemispheres. Overall, the results suggest that distinct perceptual and attentional sampling mechanisms operate at different oscillatory frequencies and their prevalence and hemispheric lateralization depends on task requirements.


Asunto(s)
Ritmo alfa , Atención , Ritmo Teta , Percepción Visual , Humanos , Atención/fisiología , Ritmo Teta/fisiología , Percepción Visual/fisiología , Masculino , Femenino , Adulto , Ritmo alfa/fisiología , Adulto Joven , Estimulación Luminosa/métodos , Electroencefalografía/métodos , Visión Ocular/fisiología
4.
Autism Res ; 17(1): 37-54, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009961

RESUMEN

Autism spectrum disorder (ASD) is associated with a hyper-focused visual attentional style, impacting higher-order social and affective domains. The understanding of such peculiarity can benefit from the use of multivariate pattern analysis (MVPA) of high-resolution electroencephalography (EEG) data, which has proved to be a powerful technique to investigate the hidden neural dynamics orchestrating sensory and cognitive processes. Here, we recorded EEG in typically developing (TD) children and in children with ASD during a visuo-spatial attentional task where attention was exogenously captured by a small (zoom-in) or large (zoom-out) cue in the visual field before the appearance of a target at different eccentricities. MVPA was performed both in the cue-locked period, to reveal potential differences in the modulation of the attentional focus, and in the target-locked period, to reveal potential cascade effects on stimulus processing. Cue-locked MVPA revealed that while in the TD group the pattern of neural activity contained information about the cue mainly before the target appearance, the ASD group showed a temporally sustained and topographically diffuse significant decoding of the cue neural response even after the target onset, suggesting a delayed extinction of cue-related neural activity. Crucially, this delayed extinction positively correlated with behavioral measures of attentional hyperfocusing. Results of target-locked MVPA were coherent with a hyper-focused attentional profile, highlighting an earlier and stronger decoding of target neural responses in small cue trials in the ASD group. The present findings document a spatially and temporally overrepresented encoding of visual information in ASD, which can constitute one of the main reasons behind their peculiar cognitive style.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Humanos , Atención/fisiología , Electroencefalografía
5.
Artículo en Inglés | MEDLINE | ID: mdl-38956003

RESUMEN

A key aspect of efficient visual processing is to use current and previous information to make predictions about what we will see next. In natural viewing, and when looking at words, there is typically an indication of forthcoming visual information from extrafoveal areas of the visual field before we make an eye movement to an object or word of interest. This "preview effect" has been studied for many years in the word reading literature and, more recently, in object perception. Here, we integrated methods from word recognition and object perception to investigate the timing of the preview on neural measures of word recognition. Through a combined use of EEG and eye-tracking, a group of multilingual participants took part in a gaze-contingent, single-shot saccade experiment in which words appeared in their parafoveal visual field. In valid preview trials, the same word was presented during the preview and after the saccade, while in the invalid condition, the saccade target was a number string that turned into a word during the saccade. As hypothesized, the valid preview greatly reduced the fixation-related evoked response. Interestingly, multivariate decoding analyses revealed much earlier preview effects than previously reported for words, and individual decoding performance correlated with participant reading scores. These results demonstrate that a parafoveal preview can influence relatively early aspects of post-saccadic word processing and help to resolve some discrepancies between the word and object literatures.

6.
Psychon Bull Rev ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783899

RESUMEN

Visual and auditory stimuli are transmitted from the environment to sensory cortices with different timing, requiring the brain to encode when sensory inputs must be segregated or integrated into a single percept. The probability that different audiovisual (AV) stimuli are integrated into a single percept even when presented asynchronously is reflected in the construct of temporal binding window (TBW). There is a strong interest in testing whether it is possible to broaden or shrink TBW by using different neuromodulatory approaches that can speed up or slow down ongoing alpha oscillations, which have been repeatedly hypothesized to be an important determinant of the TBWs size. Here, we employed a web-based sensory entrainment protocol combined with a simultaneity judgment task using simple flash-beep stimuli. The aim was to test whether AV temporal acuity could be modulated trial by trial by synchronizing ongoing neural oscillations in the prestimulus period to a rhythmic sensory stream presented in the upper (∼12 Hz) or lower (∼8.5 Hz) alpha range. As a control, we implemented a nonrhythmic condition where only the first and the last entrainers were employed. Results show that upper alpha entrainment shrinks AV TBW and improves AV temporal acuity when compared with lower alpha and control conditions. Our findings represent a proof of concept of the efficacy of sensory entrainment to improve AV temporal acuity in a trial-by-trial manner, and they strengthen the idea that alpha oscillations may reflect the temporal unit of AV temporal binding.

7.
Biomedicines ; 11(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37239069

RESUMEN

Alpha-band (7-13 Hz) activity has been linked to visuo-attentional performance in healthy participants and to impaired functionality of the visual system in a variety of clinical populations including patients with acquired posterior brain lesion and neurodevelopmental and psychiatric disorders. Crucially, several studies suggested that short uni- and multi-sensory rhythmic stimulation (i.e., visual, auditory and audio-visual) administered in the alpha-band effectively induces transient changes in alpha oscillatory activity and improvements in visuo-attentional performance by synchronizing the intrinsic brain oscillations to the external stimulation (neural entrainment). The present review aims to address the current state of the art on the alpha-band sensory entrainment, outlining its potential functional effects and current limitations. Indeed, the results of the alpha-band entrainment studies are currently mixed, possibly due to the different stimulation modalities, task features and behavioral and physiological measures employed in the various paradigms. Furthermore, it is still unknown whether prolonged alpha-band sensory entrainment might lead to long-lasting effects at a neural and behavioral level. Overall, despite the limitations emerging from the current literature, alpha-band sensory entrainment may represent a promising and valuable tool, inducing functionally relevant changes in oscillatory activity, with potential rehabilitative applications in individuals characterized by impaired alpha activity.

8.
Sci Rep ; 12(1): 2782, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177673

RESUMEN

Natural events are often multisensory, requiring the brain to combine information from the same spatial location and timing, across different senses. The importance of temporal coincidence has led to the introduction of the temporal binding window (TBW) construct, defined as the time range within which multisensory inputs are highly likely to be perceptually bound into a single entity. Anomalies in TBWs have been linked to confused perceptual experiences and inaccurate filtering of sensory inputs coming from different environmental sources. Indeed, larger TBWs have been associated with disorders such as schizophrenia and autism and are also correlated to a higher level of subclinical traits of these conditions in the general population. Here, we tested the feasibility of using a web-based version of a classic audio-visual simultaneity judgment (SJ) task with simple flash-beep stimuli in order to measure multisensory temporal acuity and its relationship with schizotypal traits as measured in the general population. Results show that: (i) the response distribution obtained in the web-based SJ task was strongly similar to those reported by studies carried out in controlled laboratory settings, and (ii) lower multisensory temporal acuity was associated with higher schizotypal traits in the "cognitive-perceptual" domains. Our findings reveal the possibility of adequately using a web-based audio-visual SJ task outside a controlled laboratory setting, available to a more diverse and representative pool of participants. These results provide additional evidence for a close relationship between lower multisensory acuity and the expression of schizotypal traits in the general population.


Asunto(s)
Percepción Auditiva , Trastorno Autístico/fisiopatología , Esquizofrenia/fisiopatología , Percepción del Tiempo , Percepción Visual , Adulto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA