Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nucleic Acids Res ; 52(6): 3346-3357, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38224454

RESUMEN

The area surrounding the tunnel exit of the 60S ribosomal subunit is a hub for proteins involved in maturation and folding of emerging nascent polypeptide chains. How different factors vie for positioning at the tunnel exit in the complex cellular environment is not well understood. We used in vivo site-specific cross-linking to approach this question, focusing on two abundant factors-the nascent chain-associated complex (NAC) and the Hsp70 chaperone system that includes the J-domain protein co-chaperone Zuotin. We found that NAC and Zuotin can cross-link to each other at the ribosome, even when translation initiation is inhibited. Positions yielding NAC-Zuotin cross-links indicate that when both are present the central globular domain of NAC is modestly shifted from the mutually exclusive position observed in cryogenic electron microscopy analysis. Cross-linking results also suggest that, even in NAC's presence, Hsp70 can situate in a manner conducive for productive nascent chain interaction-with the peptide binding site at the tunnel exit and the J-domain of Zuotin appropriately positioned to drive stabilization of nascent chain binding. Overall, our results are consistent with the idea that, in vivo, the NAC and Hsp70 systems can productively position on the ribosome simultaneously.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Ribosomas , Saccharomyces cerevisiae , Sitios de Unión , Proteínas HSP70 de Choque Térmico/genética , Péptidos/química , Biosíntesis de Proteínas , Dominios Proteicos , Ribosomas/metabolismo
2.
Subcell Biochem ; 101: 293-318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520311

RESUMEN

Mitochondrial J-domain protein (JDP) co-chaperones orchestrate the function of their Hsp70 chaperone partner(s) in critical organellar processes that are essential for cell function. These include folding, refolding, and import of mitochondrial proteins, maintenance of mitochondrial DNA, and biogenesis of iron-sulfur cluster(s) (FeS), prosthetic groups needed for function of mitochondrial and cytosolic proteins. Consistent with the organelle's endosymbiotic origin, mitochondrial Hsp70 and the JDPs' functioning in protein folding and FeS biogenesis clearly descended from bacteria, while the origin of the JDP involved in protein import is less evident. Regardless of their origin, all mitochondrial JDP/Hsp70 systems evolved unique features that allowed them to perform mitochondria-specific functions. Their modes of functional diversification and specialization illustrate the versatility of JDP/Hsp70 systems and inform our understanding of system functioning in other cellular compartments.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
J Biol Chem ; 298(2): 101570, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35026224

RESUMEN

In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron-sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1-Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.


Asunto(s)
Ferredoxinas , Proteínas Hierro-Azufre , Proteínas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Sulfurtransferasas , Sitios de Unión , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Ferredoxinas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfurtransferasas/metabolismo , Frataxina
4.
Trends Biochem Sci ; 42(5): 355-368, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28314505

RESUMEN

Hsp70 chaperone machineries have pivotal roles in an array of fundamental biological processes through their facilitation of protein folding, disaggregation, and remodeling. The obligate J-protein co-chaperones of Hsp70s drive much of this remarkable multifunctionality, with most Hsp70s having multiple J-protein partners. Recent data suggest that J-protein-driven versatility is substantially due to precise localization within the cell and the specificity of substrate protein binding. However, this relatively simple view belies the intricacy of J-protein function. Examples are emerging of J-protein interactions with Hsp70s and other chaperones, as well as integration into broader cellular networks. These interactions fine-tune, in critical ways, the ability of Hsp70s to participate in diverse cellular processes.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Modelos Moleculares
5.
PLoS Comput Biol ; 16(6): e1007913, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32479549

RESUMEN

J-domain proteins (JDPs), obligatory Hsp70 cochaperones, play critical roles in protein homeostasis. They promote key allosteric transitions that stabilize Hsp70 interaction with substrate polypeptides upon hydrolysis of its bound ATP. Although a recent crystal structure revealed the physical mode of interaction between a J-domain and an Hsp70, the structural and dynamic consequences of J-domain action once bound and how Hsp70s discriminate among its multiple JDP partners remain enigmatic. We combined free energy simulations, biochemical assays and evolutionary analyses to address these issues. Our results indicate that the invariant aspartate of the J-domain perturbs a conserved intramolecular Hsp70 network of contacts that crosses domains. This perturbation leads to destabilization of the domain-domain interface-thereby promoting the allosteric transition that triggers ATP hydrolysis. While this mechanistic step is driven by conserved residues, evolutionarily variable residues are key to initial JDP/Hsp70 recognition-via electrostatic interactions between oppositely charged surfaces. We speculate that these variable residues allow an Hsp70 to discriminate amongst JDP partners, as many of them have coevolved. Together, our data points to a two-step mode of J-domain action, a recognition stage followed by a mechanistic stage.


Asunto(s)
Proteínas HSP70 de Choque Térmico/fisiología , Adenosina Trifosfato/metabolismo , Hidrólisis , Unión Proteica , Conformación Proteica , Electricidad Estática
6.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397253

RESUMEN

Mitochondria play a central role in the biogenesis of iron-sulfur cluster(s) (FeS), protein cofactors needed for many cellular activities. After assembly on scaffold protein Isu, the cluster is transferred onto a recipient apo-protein. Transfer requires Isu interaction with an Hsp70 chaperone system that includes a dedicated J-domain protein co-chaperone (Hsc20). Hsc20 stimulates Hsp70's ATPase activity, thus stabilizing the critical Isu-Hsp70 interaction. While most eukaryotes utilize a multifunctional mitochondrial (mt)Hsp70, yeast employ another Hsp70 (Ssq1), a product of mtHsp70 gene duplication. Ssq1 became specialized in FeS biogenesis, recapitulating the process in bacteria, where specialized Hsp70 HscA cooperates exclusively with an ortholog of Hsc20. While it is well established that Ssq1 and HscA converged functionally for FeS transfer, whether these two Hsp70s possess similar biochemical properties was not known. Here, we show that overall HscA and Ssq1 biochemical properties are very similar, despite subtle differences being apparent - the ATPase activity of HscA is stimulated to a somewhat higher levels by Isu and Hsc20, while Ssq1 has a higher affinity for Isu and for Hsc20. HscA/Ssq1 are a unique example of biochemical convergence of distantly related Hsp70s, with practical implications, crossover experimental results can be combined, facilitating understanding of the FeS transfer process.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Candida/enzimología , Candida/genética , Candida/metabolismo , Dicroismo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Evolución Molecular , Duplicación de Gen , Ontología de Genes , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes , Saccharomyces/enzimología , Saccharomyces/genética , Saccharomyces/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Biol Evol ; 33(3): 643-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26545917

RESUMEN

Biogenesis of iron-sulfur clusters (FeS) is a highly conserved process involving Hsp70 and J-protein chaperones. However, Hsp70 specialization differs among species. In most eukaryotes, including Schizosaccharomyces pombe, FeS biogenesis involves interaction between the J-protein Jac1 and the multifunctional Hsp70 Ssc1. But, in Saccharomyces cerevisiae and closely related species, Jac1 interacts with the specialized Hsp70 Ssq1, which emerged through duplication of SSC1. As little is known about how gene duplicates affect the robustness of their protein interaction partners, we analyzed the functional and evolutionary consequences of Ssq1 specialization on the ubiquitous J-protein cochaperone Jac1, by comparing S. cerevisiae and S. pombe. Although deletion of JAC1 is lethal in both species, alanine substitutions within the conserved His-Pro-Asp (HPD) motif, which is critical for Jac1:Hsp70 interaction, have species-specific effects. They are lethal in S. pombe, but not in S. cerevisiae. These in vivo differences correlated with in vitro biochemical measurements. Charged residues present in the J-domain of S. cerevisiae Jac1, but absent in S. pombe Jac1, are important for tolerance of S. cerevisiae Jac1 to HPD alterations. Moreover, Jac1 orthologs from species that encode Ssq1 have a higher sequence divergence. The simplest interpretation of our results is that Ssq1's coevolution with Jac1 resulted in expansion of their binding interface, thus increasing the efficiency of their interaction. Such an expansion could in turn compensate for negative effects of HPD substitutions. Thus, our results support the idea that the robustness of Jac1 emerged as consequence of its highly efficient and specific interaction with Ssq1.


Asunto(s)
Hierro/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Azufre , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Viabilidad Microbiana/genética , Modelos Moleculares , Chaperonas Moleculares/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
8.
Postepy Biochem ; 62(2): 69-76, 2016.
Artículo en Polaco | MEDLINE | ID: mdl-28132457

RESUMEN

Hsp70 molecular chaperones function in variety of critical cellular processes, including protein folding, translocation of proteins across membranes and assembly/disassembly of protein complexes. Hsp70 systems consist of a core Hsp70 protein and its co-chaperones: J-protein and nucleotide release factor NRF. These co-chaperones regulate the cycle of interaction with protein substrate via stimulating the ATPase activity of Hsp70 (J-protein) and promoting nucleotide exchange (NRF). Compartments within the eukaryotic cell often contain multiple Hsp70s, J-proteins and NRFs. The capabilities of these systems to carry out diverse cellular functions results from either specialization of an Hsp70 or by interaction of multifunctional Hsp70 with an array of specialized J-proteins. The well-studied Hsp70 systems of yeast mitochondria provide an excellent example of functional divergence and evolution of Hsp70 machineries.


Asunto(s)
Evolución Molecular , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Genes , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/fisiología , Conformación Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/genética
9.
J Biol Chem ; 289(44): 30268-30278, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25228696

RESUMEN

In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins.


Asunto(s)
Proteínas de Unión a Hierro/química , Proteínas Mitocondriales/química , Proteínas de Saccharomyces cerevisiae/química , Sulfurtransferasas/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Proteínas Hierro-Azufre , Proteínas Mitocondriales/genética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sulfurtransferasas/genética , Frataxina
10.
Proc Natl Acad Sci U S A ; 109(26): 10370-5, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22689995

RESUMEN

Fe-S clusters are critical prosthetic groups for proteins involved in various critical biological processes. Before being transferred to recipient apo-proteins, Fe-S clusters are assembled on the highly conserved scaffold protein Isu, the abundance of which is regulated posttranslationally on disruption of the cluster biogenesis system. Here we report that Isu is degraded by the Lon-type AAA+ ATPase protease of the mitochondrial matrix, Pim1. Nfs1, the cysteine desulfurase responsible for providing sulfur for cluster formation, is required for the increased Isu stability occurring after disruption of cluster formation on or transfer from Isu. Physical interaction between the Isu and Nfs1 proteins, not the enzymatic activity of Nfs1, is the important factor in increased stability. Analysis of several conditions revealed that high Isu levels can be advantageous or disadvantageous, depending on the physiological condition. During the stationary phase, elevated Isu levels were advantageous, resulting in prolonged chronological lifespan. On the other hand, under iron-limiting conditions, high Isu levels were deleterious. Compared with cells expressing normal levels of Isu, such cells grew poorly and exhibited reduced activity of the heme-containing enzyme ferric reductase. Our results suggest that modulation of the degradation of Isu by the Pim1 protease is a regulatory mechanism serving to rapidly help balance the cell's need for critical iron-requiring processes under changing environmental conditions.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Estabilidad de Enzimas , Humanos
11.
J Biol Chem ; 288(40): 29134-42, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23946486

RESUMEN

Biogenesis of mitochondrial iron-sulfur (Fe/S) cluster proteins requires the interaction of multiple proteins with the highly conserved 14-kDa scaffold protein Isu, on which clusters are built prior to their transfer to recipient proteins. For example, the assembly process requires the cysteine desulfurase Nfs1, which serves as the sulfur donor for cluster assembly. The transfer process requires Jac1, a J-protein Hsp70 cochaperone. We recently identified three residues on the surface of Jac1 that form a hydrophobic patch critical for interaction with Isu. The results of molecular modeling of the Isu1-Jac1 interaction, which was guided by these experimental data and structural/biophysical information available for bacterial homologs, predicted the importance of three hydrophobic residues forming a patch on the surface of Isu1 for interaction with Jac1. Using Isu variants having alterations in residues that form the hydrophobic patch on the surface of Isu, this prediction was experimentally validated by in vitro binding assays. In addition, Nfs1 was found to require the same hydrophobic residues of Isu for binding, as does Jac1, suggesting that Jac1 and Nfs1 binding is mutually exclusive. In support of this conclusion, Jac1 and Nfs1 compete for binding to Isu. Evolutionary analysis revealed that residues involved in these interactions are conserved and that they are critical residues for the biogenesis of Fe/S cluster protein in vivo. We propose that competition between Jac1 and Nfs1 for Isu binding plays an important role in transitioning the Fe/S cluster biogenesis machinery from the cluster assembly step to the Hsp70-mediated transfer of the Fe/S cluster to recipient proteins.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sulfurtransferasas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Unión Competitiva , Liasas de Carbono-Azufre/química , Secuencia Conservada , Evolución Molecular , Proteínas Hierro-Azufre/química , Proteínas Mitocondriales/química , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Sulfurtransferasas/química
12.
Biochim Biophys Acta ; 1833(10): 2233-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23688635

RESUMEN

Faithful replication and propagation of mitochondrial DNA (mtDNA) is critical for cellular respiration. Molecular chaperones, ubiquitous proteins involved in protein folding and remodeling of protein complexes, have been implicated in mtDNA transactions. In particular, cells lacking Mdj1, an Hsp40 co-chaperone of Hsp70 in the mitochondrial matrix, do not maintain functional mtDNA. Here we report that the great majority of Mdj1 is associated with nucleoids, DNA-protein complexes that are the functional unit of mtDNA transactions. Underscoring the importance of Hsp70 chaperone activity in the maintenance of mtDNA, an Mdj1 variant having an alteration in the Hsp70-interacting J-domain does not maintain mtDNA. However, a J-domain containing fragment expressed at the level that Mdj1 is normally present is not competent to maintain mtDNA, suggesting a function of Mdj1 beyond that carried out by its J-domain. Nevertheless, loss of mtDNA function upon Mdj1 depletion is retarded when the J-domain, is overexpressed. Analysis of Mdj1 variants revealed a correlation between nucleoid association and DNA maintenance activity, suggesting that localization is functionally important. We found that Mdj1 has DNA binding activity and that variants retaining DNA-binding activity also retained nucleoid association. Together, our results are consistent with a model in which Mdj1, tethered to the nucleoid via DNA binding, thus driving a high local concentration of the Hsp70 machinery, is important for faithful DNA maintenance and propagation.


Asunto(s)
Núcleo Celular/metabolismo , Replicación del ADN , ADN Mitocondrial/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Biol Evol ; 30(5): 985-98, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23329686

RESUMEN

Across eukaryotes, Hsp70-based chaperone machineries display an underlying unity in their sequence, structure, and biochemical mechanism of action, while working in a myriad of cellular processes. In good part, this extraordinary functional versatility is derived from the ability of a single Hsp70 to interact with an array of J-protein cochaperones to form a functional chaperone network. Among J-proteins, the DnaJ-type is the most prevalent, being present in all three kingdoms and in several different compartments of eukaryotic cells. However, because these ancient DnaJ-type proteins diverged at the base of the eukaryotic phylogeny, little is understood about the evolutionary basis of their diversification and thus the functional expansion of the chaperone network. Here, we report results of evolutionary and experimental analyses of two more recent members of the cytosolic DnaJ family of Saccharomyces cerevisiae, Xdj1 and Apj1, which emerged by sequential duplications of the ancient YDJ1 in Ascomycota. Sequence comparison and molecular modeling revealed that both Xdj1 and Apj1 maintained a domain organization similar to that of multifunctional Ydj1. However, despite these similarities, both Xdj1 and Apj1 evolved highly specialized functions. Xdj1 plays a unique role in the translocation of proteins from the cytosol into mitochondria. Apj1's specialized role is related to degradation of sumolyated proteins. Together these data provide the first clear example of cochaperone duplicates that evolved specialized functions, allowing expansion of the chaperone functional network, while maintaining the overall structural organization of their parental gene.


Asunto(s)
Citosol/metabolismo , Duplicación de Gen/genética , Proteínas del Choque Térmico HSP40/genética , Evolución Molecular , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119717, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574821

RESUMEN

Among the six known iron­sulfur (FeS) cluster biogenesis machineries that function across all domains of life only one involves a molecular chaperone system. This machinery, called ISC for 'iron sulfur cluster', functions in bacteria and in mitochondria of eukaryotes including humans. The chaperone system - a dedicated J-domain protein co-chaperone termed Hsc20 and its Hsp70 partner - is essential for proper ISC machinery function, interacting with the scaffold protein IscU which serves as a platform for cluster assembly and subsequent transfer onto recipient apo-proteins. Despite many years of research, surprisingly little is known about the specific role(s) that the chaperones play in the ISC machinery. Here we review three non-exclusive scenarios that range from involvement of the chaperones in the cluster transfer to regulation of the cellular levels of IscU itself.


Asunto(s)
Proteínas Hierro-Azufre , Chaperonas Moleculares , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
15.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38320449

RESUMEN

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Polonia , Proteínas del Choque Térmico HSP40/metabolismo
16.
J Mol Biol ; 435(21): 168283, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37730084

RESUMEN

Hsp70 are ubiquitous, versatile molecular chaperones that cyclically interact with substrate protein(s). The initial step requires synergistic interaction of a substrate and a J-domain protein (JDP) cochaperone, via its J-domain, with Hsp70 to stimulate hydrolysis of its bound ATP. This hydrolysis drives conformational changes in Hsp70 that stabilize substrate binding. However, because of the transient nature of substrate and JDP interactions, this key step is not well understood. Here we leverage a well characterized Hsp70 system specialized for iron-sulfur cluster biogenesis, which like many systems, has a JDP that binds substrate on its own. Utilizing an ATPase-deficient Hsp70 variant, we isolated a Hsp70-JDP-substrate tripartite complex. Complex formation and stability depended on residues previously identified as essential for bipartite interactions: JDP-substrate, Hsp70-substrate and J-domain-Hsp70. Computational docking based on the established J-domain-Hsp70(ATP) interaction placed the substrate close to its predicted position in the peptide-binding cleft, with the JDP having the same architecture as when in a bipartite complex with substrate. Together, our results indicate that the structurally rigid JDP-substrate complex recruits Hsp70(ATP) via precise positioning of J-domain and substrate at their respective interaction sites - resulting in functionally high affinity (i.e., avidity). The exceptionally high avidity observed for this specialized system may be unusual because of the rigid architecture of its JDP and the additional JDP-Hsp70 interaction site uncovered in this study. However, functionally important avidity driven by JDP-substrate interactions is likely sufficient to explain synergistic ATPase stimulation and efficient substrate trapping in many Hsp70 systems.

17.
Mol Biol Evol ; 28(7): 2005-17, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21245414

RESUMEN

Mitochondria are essential organelles required for a number of key cellular processes. As most mitochondrial proteins are nuclear encoded, their efficient translocation into the organelle is critical. Transport of proteins across the inner membrane is driven by a multicomponent, matrix-localized "import motor," which is based on the activity of the molecular chaperone Hsp70 and a J-protein cochaperone. In Saccharomyces cerevisiae, two paralogous J-proteins, Pam18 and Mdj2, can form the import motor. Both contain transmembrane and matrix domains, with Pam18 having an additional intermembrane space (IMS) domain. Evolutionary analyses revealed that the origin of the IMS domain of S. cerevisiae Pam18 coincides with a gene duplication event that generated the PAM18/MDJ2 gene pair. The duplication event and origin of the Pam18 IMS domain occurred at the relatively ancient divergence of the fungal subphylum Saccharomycotina. The timing of the duplication event also corresponds with a number of additional functional changes related to mitochondrial function and respiration. Physiological and genetic studies revealed that the IMS domain of Pam18 is required for efficient growth under anaerobic conditions, even though it is dispensable when oxygen is present. Thus, the gene duplication was beneficial for growth capacity under particular environmental conditions as well as diversification of the import motor components.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Aerobiosis , Secuencia de Aminoácidos , Anaerobiosis/genética , Western Blotting , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
18.
EMBO Rep ; 11(5): 360-5, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20224575

RESUMEN

Molecular mechanisms by which protein-protein interactions are preserved or lost after gene duplication are not understood. Taking advantage of the well-studied yeast mtHsp70:J-protein molecular chaperone system, we considered whether changes in partner proteins accompanied specialization of gene duplicates. Here, we report that existence of the Hsp70 Ssq1, which arose by duplication of the gene encoding multifunction mtHsp70 and specializes in iron-sulphur cluster biogenesis, correlates with functional and structural changes in the J domain of its J-protein partner Jac1. All species encoding this shorter alternative version of the J domain share a common ancestry, suggesting that all short JAC1 proteins arose from a single deletion event. Construction of a variant that extended the length of the J domain of a 'short' Jac1 enhanced its ability to partner with multifunctional Hsp70. Our data provide a causal link between changes in the J protein partner and specialization of duplicate Hsp70.


Asunto(s)
Evolución Molecular , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Modelos Genéticos , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química
19.
Front Mol Biosci ; 9: 1034453, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310602

RESUMEN

In cells molecular chaperone systems consisting of Hsp70 and its obligatory J-domain protein (JDP) co-chaperones transiently interact with a myriad of client proteins-with JDPs typically recruiting their partner Hsp70 to interact with particular clients. The fundamentals of this cyclical interactions between JDP/Hsp70 systems and clients are well established. Much less is known about other aspects of JDP/Hsp70 system function, including how such systems evolved over time. Here we discuss the JDP/Hsp70 system involved in the biogenesis of iron-sulfur (FeS) clusters. Interaction between the client protein, the scaffold on which clusters are built, and its specialized JDP Hsc20 has stayed constant. However, the system's Hsp70 has changed at least twice. In some species Hsc20's Hsp70 partner interacts only with the scaffold, in others it has many JDP partners in addition to Hsc20 and interacts with many client proteins. Analysis of this switching of Hsp70 partners has provided insight into the insulation of JDP/Hsp70 systems from one another that can occur when more than one Hsp70 is present in a cellular compartment, as well as how competition among JDPs is balanced when an Hsp70 partner is shared amongst a number of JDPs. Of particularly broad relevance, even though the scaffold's interactions with Hsc20 and Hsp70 are functionally critical for the biogenesis of FeS cluster-containing proteins, it is the modulation of the Hsc20-Hsp70 interaction per se that allows Hsc20 to function with such different Hsp70 partners.

20.
Biochim Biophys Acta ; 1783(1): 107-17, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18023287

RESUMEN

Mitochondrial DNA (mtDNA) is inherited as a protein-DNA complex (the nucleoid). Proteins associated with the nucleoid are not only components directly involved in maintenance and propagation of mtDNA but can also be bi-functional enzymes whose metabolic activities are not directly related to mtDNA stability. In the yeast Saccharomyces cerevisiae, one such enzyme, Ilv5p is required for branch chain amino acid biosynthesis but also associates with the nucleoid. Deletions of ILV5 lead not only to metabolic defects but also to destabilization of mtDNA. Further, minor overproduction of Ilv5p stabilizes mtDNA in strains lacking Abf2p, a major mtDNA binding and packaging protein. Here we show that Ilv5p binds double-stranded DNA in vitro and is unaffected by the presence of saturating concentrations of Abf2p. In cells lacking Abf2p the amount of Ilv5p associated with the nucleoid increases significantly and is proportional to the mitochondrial concentration of Ilv5p. Altogether, we conclude that direct binding of Ilv5p can aid in the maintenance and stabilization of mtDNA.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Oxidorreductasas de Alcohol/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Proteínas Mitocondriales/genética , Mutación/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triptófano/genética , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA