Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894496

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapies have increased the patients with relapsed/refractory multiple myeloma (RRMM) in whom standard electrophoretic techniques fail to detect the M-protein. Quantitative immunoprecipitation mass spectrometry (QIP-MS) can accurately measure serum M-protein with high sensitivity, and identify interferences caused by therapeutic monoclonal antibodies. Here, we investigate the outcome of QIP-MS in 33 patients treated with the academic BCMA-directed CAR T-cell ARI0002h (Cesnicabtagene Autoleucel). QIP-MS offered more detailed insights than serum immunofixation (sIFE), identifying glycosylated M-proteins and minor additional peaks. Moreover, the potential interferences owing to daratumumab or tocilizumab treatments were successfully detected. When analysing different assay platforms during patient's monitoring after ARI0002h administration, we observed that QIP-MS showed a high global concordance (78.8%) with sIFE, whereas it was only moderate (55.6%) with bone marrow (BM)-based next-generation flow cytometry (NGF). Furthermore, QIP-MS consistently demonstrated the lowest negativity rate across the different timepoints (27.3% vs. 60.0% in months 1 and 12, respectively). Patients with QIP-MS(+)/BM-based NGF(-) showed a non-significant shorter median progression free survival than those with QIP-MS(-)/BM-based NGF(-). In summary, we show the first experience to our knowledge demonstrating that QIP-MS could be particularly useful as a non-invasive technique when evaluating response after CAR T-cell treatment in MM.

2.
Lancet Oncol ; 24(8): 913-924, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414060

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy is a promising option for patients with heavily treated multiple myeloma. Point-of-care manufacturing can increase the availability of these treatments worldwide. We aimed to assess the safety and activity of ARI0002h, a BCMA-targeted CAR T-cell therapy developed by academia, in patients with relapsed or refractory multiple myeloma. METHODS: CARTBCMA-HCB-01 is a single-arm, multicentre study done in five academic centres in Spain. Eligible patients had relapsed or refractory multiple myeloma and were aged 18-75 years; with an Eastern Cooperative Oncology Group performance status of 0-2; two or more previous lines of therapy including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 antibody; refractoriness to the last line of therapy; and measurable disease according to the International Myeloma Working Group criteria. Patients received an initial fractionated infusion of 3 × 106 CAR T cells per kg bodyweight in three aliquots (0·3, 0·9, and 1·8 × 106 CAR-positive cells per kg intravenously on days 0, 3, and 7) and a non-fractionated booster dose of up to 3 × 106 CAR T cells per kg bodyweight, at least 100 days after the first infusion. The primary endpoints were overall response rate 100 days after first infusion and the proportion of patients developing cytokine-release syndrome or neurotoxic events in the first 30 days after receiving treatment. Here, we present an interim analysis of the ongoing trial; enrolment has ended. This study is registered with ClinicalTrials.gov, NCT04309981, and EudraCT, 2019-001472-11. FINDINGS: Between June 2, 2020, and Feb 24, 2021, 44 patients were assessed for eligibility, of whom 35 (80%) were enrolled. 30 (86%) of 35 patients received ARI0002h (median age 61 years [IQR 53-65], 12 [40%] were female, and 18 [60%] were male). At the planned interim analysis (cutoff date Oct 20, 2021), with a median follow-up of 12·1 months (IQR 9·1-13·5), overall response during the first 100 days from infusion was 100%, including 24 (80%) of 30 patients with a very good partial response or better (15 [50%] with complete response, nine [30%] with very good partial response, and six [20%] with partial response). Cytokine-release syndrome was observed in 24 (80%) of 30 patients (all grade 1-2). No cases of neurotoxic events were observed. Persistent grade 3-4 cytopenias were observed in 20 (67%) patients. Infections were reported in 20 (67%) patients. Three patients died: one because of progression, one because of a head injury, and one due to COVID-19. INTERPRETATION: ARI0002h administered in a fractioned manner with a booster dose after 3 months can provide deep and sustained responses in patients with relapsed or refractory multiple myeloma, with a low toxicity, especially in terms of neurological events, and with the possibility of a point-of-care approach. FUNDING: Instituto de Salud Carlos III (co-funded by the EU), Fundación La Caixa, and Fundació Bosch i Aymerich.


Asunto(s)
COVID-19 , Mieloma Múltiple , Humanos , Masculino , Femenino , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Inmunoterapia Adoptiva/efectos adversos , Antígeno de Maduración de Linfocitos B , Proyectos Piloto , Citocinas
3.
Haematologica ; 106(1): 173-184, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919085

RESUMEN

Multiple myeloma is a prevalent and incurable disease, despite the development of new and effective drugs. The recent development of chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in the treatment of patients with relapsed or refractory hematological B cell malignancies. In the recent years, B-cell maturation antigen (BCMA) has appeared as a promising antigen to target using a variety of immuno-therapy treatments including CART cells, for MM patients. To this end, we generated clinical-grade murine CART cells directed against BCMA, named ARI2m cells. Having demonstrated its efficacy, and in an attempt to avoid the immune rejection of CART cells by the patient, the single chain variable fragment was humanized, creating ARI2h cells. ARI2h cells demonstrated comparable in vitro and in vivo efficacy to ARI2m cells, and superiority in cases of high tumor burden disease. In terms of inflammatory response, ARI2h cells showed a lower TNFα production and lower in vivo toxicity profile. Large-scale expansion of both ARI2m and ARI2h cells was efficiently conducted following Good Manufacturing Practice guidelines, obtaining the target CART cell dose required for treatment of multiple myeloma patients. Moreover, we demonstrate that soluble BCMA and BCMA released in vesicles impacts on CAR-BCMA activity. In summary, this study sets the bases for the implementation of a clinical trial (EudraCT code: 2019-001472-11) to study the efficacy of ARI2h cell treatment for multiple myeloma patients.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Animales , Antígeno de Maduración de Linfocitos B , Humanos , Inmunoterapia Adoptiva , Ratones , Mieloma Múltiple/terapia , Receptores Quiméricos de Antígenos/genética , Linfocitos T
4.
J Immunol ; 200(8): 2581-2591, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29531171

RESUMEN

Mechanisms of immune regulation may control proliferation of aberrant plasma cells (PCs) in patients with monoclonal gammopathy of undetermined significance (MGUS) preventing progression to active multiple myeloma (MM). We hypothesized that CD85j (LILRB1), an inhibitory immune checkpoint for B cell function, may play a role in MM pathogenesis. In this study, we report that patients with active MM had significantly lower levels of CD85j and its ligand S100A9. Decreased CD85j expression could also be detected in the premalignant condition MGUS, suggesting that loss of CD85j may be an early event promoting tumor immune escape. To gain insight into the molecular mechanisms underlying CD85j functions, we next enforced expression of CD85j in human myeloma cell lines by lentiviral transduction. Interestingly, gene expression profiling of CD85j-overexpressing cells revealed a set of downregulated genes with crucial functions in MM pathogenesis. Furthermore, in vitro functional assays demonstrated that CD85j overexpression increased susceptibility to T cell- and NK-mediated killing. Consistently, ligation of CD85j decreased the number of PCs from individuals with MGUS but not from patients with MM. In conclusion, downregulation of inhibitory immune checkpoints on malignant PCs may provide a novel mechanism of immune escape associated with myeloma pathogenesis.


Asunto(s)
Antígenos CD/inmunología , Receptor Leucocitario Tipo Inmunoglobulina B1/inmunología , Mieloma Múltiple/inmunología , Células Plasmáticas/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos B , Línea Celular Tumoral , Regulación hacia Abajo/inmunología , Femenino , Humanos , Células Asesinas Naturales/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Transcriptoma/inmunología
5.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570952

RESUMEN

Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Senescencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Neoplasias/inmunología
6.
Biol Blood Marrow Transplant ; 24(10): 2088-2093, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29753162

RESUMEN

This study examined the impact of prednisone (PDN) on cytomegalovirus (CMV) infection after allogeneic stem cell transplantation (allo-SCT) according to donor and recipient CMV serostatus. Seventy-five patients underwent allo-SCT from June 2010 to July 2012. The risk of CMV infection according to donor and recipient serostatus was defined as follows: high risk (HR; D-/R+), intermediate risk (IR; D+/R+ and D+/R-), and low risk (D-/R-). Forty-five patients (60%) developed CMV infection, and 46 patients (61%) received steroids (PDN ≥ 1 mg/kg/day) to treat acute graft-versus-host disease. CMV infection was more common in those treated with steroids than in those not treated with steroids (70% versus 44%, respectively, P < .05). Overall, 40% of patients had recurrent CMV infection (50% PDN versus 24% no PDN, P < .05). Steroids had no impact on the incidence of CMV infection or its recurrence in HR patients; however, steroids did prolong the need for antiviral treatment. The incidence of CMV infection in IR patients was higher in those receiving PDN (80% PDN versus 41% no PDN, P = .01); recurrence rates were also higher (55% PDN versus 18% no PDN, P = .02). We analyzed CMV-specific immune reconstitution in the first 22 patients of the series and observed that patients on steroids had lower levels of CMV-specific lymphocytes TCD8 (P < .05 on days +60, +100, and +180) and that CMV-specific immune reconstitution (defined as lymphocytes CD8/IFN ≥ 1 cell/µL) was achieved later (after day +100 post-SCT) in the steroid group.


Asunto(s)
Antivirales/administración & dosificación , Infecciones por Citomegalovirus , Citomegalovirus , Enfermedad Injerto contra Huésped , Esteroides/efectos adversos , Donantes de Tejidos , Adolescente , Adulto , Anciano , Aloinjertos , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inducido químicamente , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/epidemiología , Femenino , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/epidemiología , Enfermedad Injerto contra Huésped/inmunología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia , Factores de Riesgo , Esteroides/administración & dosificación
7.
Int J Mol Sci ; 19(11)2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445802

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy characterized by clonal proliferation of malignant plasma cells in bone marrow. In the last 20 years, the introduction of autologous stem cell transplantation, followed by proteasome inhibitors and immunomodulatory agents, increased the survival of MM patients by 50%. However, still a high proportion of patients relapse and become refractory, especially, high-risk patients with adverse cytogenetics where these treatment combinations have shown limited benefit. Therefore, novel strategies, such as immunotherapy, have been developed in the last few years to help improve the survival of these patients. Immunotherapy treatments include a high number of different strategies used to attack the tumor cells by using the immune system. Here, we will review the most successful immunotherapy strategies published up to date in patients with relapsed or refractory (R/R) MM, including monoclonal antibodies targeting specific antigens on the tumor cells, antibodies combined with cytotoxic drugs or Antibodies Drug Conjugates, immune checkpoint inhibitors which eliminate the barriers that damper immune cells and prevent them from attacking tumor cells, bi-specific T-cell engagers antibodies (BiTEs), bi-specific antibodies and the infusion of chimeric antigen receptor-modified T cells. We overview the results of clinical studies that have been presented up to date and also review pre-clinical studies describing potential novel treatments for MM.


Asunto(s)
Inmunoterapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Animales , Antígeno de Maduración de Linfocitos B/metabolismo , Ensayos Clínicos como Asunto , Humanos , Inmunoterapia Adoptiva
8.
Int J Mol Sci ; 18(9)2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28850071

RESUMEN

In recent years, the relevance of the immune system to fight cancer has led to the development of immunotherapy, including the adoptive cell transfer of immune cells, such as natural killer (NK) cells and chimeric antigen receptors (CAR)-modified T cells. The discovery of donor NK cells' anti-tumor activity in acute myeloid leukemia patients receiving allogeneic stem cell transplantation (allo-SCT) was the trigger to conduct many clinical trials infusing NK cells. Surprisingly, many of these studies did not obtain optimal results, suggesting that many different NK cell parameters combined with the best clinical protocol need to be optimized. Various parameters including the high array of activating receptors that NK cells have, the source of NK cells selected to treat patients, different cytotoxic mechanisms that NK cells activate depending on the target cell and tumor cell survival mechanisms need to be considered before choosing the best immunotherapeutic strategy using NK cells. In this review, we will discuss these parameters to help improve current strategies using NK cells in cancer therapy. Moreover, the chimeric antigen receptor (CAR) modification, which has revolutionized the concept of immunotherapy, will be discussed in the context of NK cells. Lastly, the dark side of NK cells and their involvement in inflammation will also be discussed.


Asunto(s)
Células Asesinas Naturales/trasplante , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Trasplante de Células Madre Hematopoyéticas , Humanos , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/uso terapéutico
9.
Biol Blood Marrow Transplant ; 20(5): 630-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24462744

RESUMEN

Hematopoietic progenitor cells (HPCs) from granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (G-PB), bone marrow (BM), or umbilical cord blood (CB) have differing biological properties and differing kinetics of engraftment post-transplantation, which might be explained, at least in part, by differing gene and miRNA expression patterns. To assess the differences in gene and miRNA expression, we analyzed whole genome expression profiles as well as the expression of 384 miRNAs in CD34(+) cells isolated from 18 healthy individuals (6 individuals per subtype of HPC source). We identified 43 genes and 36 miRNAs differentially expressed in the various CD34(+) cell sources. We observed that CD34(+) cells from CB and BM showed similar gene and miRNA expression profiles, whereas CD34(+) cells from G-PB had a very different expression pattern. Remarkably, 20 of the differentially expressed genes are targets of the differentially expressed miRNAs. Of note, the majority of genes differentially expressed in CD34(+) cells from G-PB are involved in cell cycle regulation, promoting the process of proliferation, survival, hematopoiesis, and cell signaling, and are targets of overexpressed and underexpressed miRNAs in CD34(+) cells from the same source. These data suggest significant differences in gene and miRNA expression among the various HPC sources used in transplantation. We hypothesize that the differentially expressed genes and miRNAs involved in cell cycle and proliferation might explain the differing kinetics of engraftment observed after transplantation of hematopoietic stem cells obtained from these different sources.


Asunto(s)
Células de la Médula Ósea/metabolismo , Sangre Fetal/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Células Madre Hematopoyéticas/metabolismo , MicroARNs/genética , Antígenos CD34/genética , Antígenos CD34/metabolismo , Células de la Médula Ósea/citología , Ciclo Celular/genética , Proliferación Celular , Sangre Fetal/citología , Perfilación de la Expresión Génica , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/citología , Humanos , MicroARNs/metabolismo , Transducción de Señal
10.
Haematologica ; 99(2): 243-51, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24056818

RESUMEN

Granulocyte colony-stimulating factor is the most commonly used cytokine for the mobilization of hematopoietic progenitor cells from healthy donors for allogeneic stem cell transplantation. Although the administration of this cytokine is considered safe, knowledge about its long-term effects, especially in hematopoietic progenitor cells, is limited. On this background, the aim of our study was to analyze whether or not granulocyte colony-stimulating factor induces changes in gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors, and to determine whether or not these changes persist in the long-term. For this purpose, we analyzed the whole genome expression profile and the expression of 384 microRNA in CD34(+) cells isolated from peripheral blood of six healthy donors, before mobilization and at 5, 30 and 365 days after mobilization with granulocyte colony-stimulating factor. Six microRNA were differentially expressed at all time points analyzed after mobilization treatment as compared to the expression in samples obtained before exposure to the drug. In addition, 2424 genes were also differentially expressed for at least 1 year after mobilization. Of interest, 109 of these genes are targets of the differentially expressed microRNA also identified in this study. These data strongly suggest that granulocyte colony-stimulating factor modifies gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors. Remarkably, some changes are present from early time-points and persist for at least 1 year after exposure to the drug. This effect on hematopoietic progenitor cells has not been previously reported.


Asunto(s)
Antígenos CD34 , Donantes de Sangre , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Células Madre Hematopoyéticas/metabolismo , MicroARNs/biosíntesis , Adulto , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Células Madre Hematopoyéticas/citología , Humanos , Masculino , Factores de Tiempo
11.
Haematologica ; 99(7): 1168-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24727813

RESUMEN

Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of CD34(+) cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and immunological properties, suggesting that they do not contribute to the pathogenesis of the disease.


Asunto(s)
Anemia Aplásica/inmunología , Anemia Aplásica/metabolismo , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Adolescente , Adulto , Anciano , Anemia Aplásica/diagnóstico , Anemia Aplásica/etiología , Antígenos CD34/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Células Cultivadas , Niño , Técnicas de Cocultivo , Femenino , Sangre Fetal/citología , Supervivencia de Injerto , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunomodulación , Inmunofenotipificación , Masculino , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Fenotipo , Adulto Joven
12.
Cytotherapy ; 16(1): 84-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24094497

RESUMEN

BACKGROUND AIMS: Advantages associated with the use of cord blood (CB) transplantation include the availability of cryopreserved units, ethnic diversity and lower incidence of graft-versus-host disease compared with bone marrow or mobilized peripheral blood. However, poor engraftment remains a major obstacle. We and others have found that ex vivo fucosylation can enhance engraftment in murine models, and now ex vivo treatment of CB with fucosyltransferase (FT) VI before transplantation is under clinical evaluation (NCT01471067). However, FTVII appears to be more relevant to hematopoietic cells and may alter acceptor substrate diversity. The present study compared the ability of FTVI and FTVII to improve the rapidity, magnitude, multi-lineage and multi-tissue engraftment of human CB hematopoietic stem and progenitor cells (HSPCs) in vivo. METHODS: CD34-selected CB HSPCs were treated with recombinant FTVI, FTVII or mock control and then injected into immunodeficient mice and monitored for multi-lineage and multi-tissue engraftment. RESULTS: Both FTVI and FTVII fucosylated CB CD34⁺ cells in vitro, and both led to enhanced rates and magnitudes of engraftment compared with untreated CB CD34⁺ cells in vivo. Engraftment after treatment with either FT was robust at multiple time points and in multiple tissues with similar multi-lineage potential. In contrast, only FTVII was able to fucosylate T and B lymphocytes. CONCLUSIONS: Although FTVI and FTVII were found to be similarly able to fucosylate and enhance the engraftment of CB CD34⁺ cells, differences in their ability to fucosylate lymphocytes may modulate graft-versus-tumor or graft-versus-host effects and may allow further optimization of CB transplantation.


Asunto(s)
Sangre Fetal/efectos de los fármacos , Fucosiltransferasas/administración & dosificación , Enfermedad Injerto contra Huésped/terapia , Animales , Modelos Animales de Enfermedad , Sangre Fetal/citología , Sangre Fetal/trasplante , Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Ratones
13.
Front Immunol ; 15: 1386856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779672

RESUMEN

Adoptive T cellular immunotherapies have emerged as relevant approaches for treating cancer patients who have relapsed or become refractory (R/R) to traditional cancer treatments. Chimeric antigen receptor (CAR) T-cell therapy has improved survival in various hematological malignancies. However, significant limitations still impede the widespread adoption of these therapies in most cancers. To advance in this field, six research groups have created the "NEXT Generation CART MAD Consortium" (NEXT CART) in Madrid's Community, which aims to develop novel cell-based immunotherapies for R/R and poor prognosis cancers. At NEXT CART, various basic and translational research groups and hospitals in Madrid concur to share and synergize their basic expertise in immunotherapy, gene therapy, and immunological synapse, and clinical expertise in pediatric and adult oncology. NEXT CART goal is to develop new cell engineering approaches and treatments for R/R adult and pediatric neoplasms to evaluate in multicenter clinical trials. Here, we discuss the current limitations of T cell-based therapies and introduce our perspective on future developments. Advancement opportunities include developing allogeneic products, optimizing CAR signaling domains, combining cellular immunotherapies, multi-targeting strategies, and improving tumor-infiltrating lymphocytes (TILs)/T cell receptor (TCR) therapy. Furthermore, basic studies aim to identify novel tumor targets, tumor molecules in the tumor microenvironment that impact CAR efficacy, and strategies to enhance the efficiency of the immunological synapse between immune and tumor cells. Our perspective of current cellular immunotherapy underscores the potential of these treatments while acknowledging the existing hurdles that demand innovative solutions to develop their potential for cancer treatment fully.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Neoplasias/inmunología , Linfocitos T/inmunología , Animales
14.
Front Immunol ; 15: 1375833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601159

RESUMEN

Introduction: The clinical success of chimeric antigen receptor-modified T cells (CAR-T cells) for hematological malignancies has not been reproduced for solid tumors, partly due to the lack of cancer-type specific antigens. In this work, we used a novel combinatorial approach consisting of a versatile anti-FITC CAR-T effector cells plus an FITC-conjugated neuroblastoma (NB)-targeting linker, an FITC-conjugated monoclonal antibody (Dinutuximab) that recognizes GD2. Methods: We compared cord blood (CB), and CD45RA-enriched peripheral blood leukapheresis product (45RA) as allogeneic sources of T cells, using peripheral blood (PB) as a control to choose the best condition for anti-FITC CAR-T production. Cells were manufactured under two cytokine conditions (IL-2 versus IL-7+IL-15+IL-21) with or without CD3/CD28 stimulation. Immune phenotype, vector copy number, and genomic integrity of the final products were determined for cell characterization and quality control assessment. Functionality and antitumor capacity of CB/45RA-derived anti-FITC CAR-T cells were analyzed in co-culture with different anti-GD2-FITC labeled NB cell lines. Results: The IL-7+IL-15+IL-21 cocktail, in addition to co-stimulation signals, resulted in a favorable cell proliferation rate and maintained less differentiated immune phenotypes in both CB and 45RA T cells. Therefore, it was used for CAR-T cell manufacturing and further characterization. CB and CD45RA-derived anti-FITC CAR-T cells cultured with IL-7+IL-15+IL-21 retained a predominantly naïve phenotype compared with controls. In the presence of the NB-FITC targeting, CD4+ CB-derived anti-FITC CAR-T cells showed the highest values of co-stimulatory receptors OX40 and 4-1BB, and CD8+ CAR-T cells exhibited high levels of PD-1 and 4-1BB and low levels of TIM3 and OX40, compared with CAR-T cells form the other sources studied. CB-derived anti-FITC CAR-T cells released the highest amounts of cytokines (IFN-γ and TNF-α) into co-culture supernatants. The viability of NB target cells decreased to 30% when co-cultured with CB-derived CAR-T cells during 48h. Conclusion: CB and 45RA-derived T cells may be used as allogeneic sources of T cells to produce CAR-T cells. Moreover, ex vivo culture with IL-7+IL-15+IL-21 could favor CAR-T products with a longer persistence in the host. Our strategy may complement the current use of Dinutuximab in treating NB through its combination with a targeted CAR-T cell approach.


Asunto(s)
Neuroblastoma , Receptores Quiméricos de Antígenos , Humanos , Linfocitos T , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Fluoresceína-5-Isotiocianato , Citocinas/metabolismo
15.
Sci Transl Med ; 16(734): eadg7962, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354229

RESUMEN

Multiple myeloma is the second most common hematological malignancy in adults and remains an incurable disease. B cell maturation antigen (BCMA)-directed immunotherapy, including T cells bearing chimeric antigen receptors (CARs) and systemically injected bispecific T cell engagers (TCEs), has shown remarkable clinical activity, and several products have received market approval. However, despite promising results, most patients eventually become refractory and relapse, highlighting the need for alternative strategies. Engineered T cells secreting TCE antibodies (STAb) represent a promising strategy that combines the advantages of adoptive cell therapies and bispecific antibodies. Here, we undertook a comprehensive preclinical study comparing the therapeutic potential of T cells either expressing second-generation anti-BCMA CARs (CAR-T) or secreting BCMAxCD3 TCEs (STAb-T) in a T cell-limiting experimental setting mimicking the conditions found in patients with relapsed/refractory multiple myeloma. STAb-T cells recruited T cell activity at extremely low effector-to-target ratios and were resistant to inhibition mediated by soluble BCMA released from the cell surface, resulting in enhanced cytotoxic responses and prevention of immune escape of multiple myeloma cells in vitro. These advantages led to robust expansion and persistence of STAb-T cells in vivo, generating long-lived memory BCMA-specific responses that could control multiple myeloma progression in xenograft models, outperforming traditional CAR-T cells. These promising preclinical results encourage clinical testing of the BCMA-STAb-T cell approach in relapsed/refractory multiple myeloma.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Adulto , Humanos , Mieloma Múltiple/patología , Linfocitos T , Inmunoterapia Adoptiva/métodos , Antígeno de Maduración de Linfocitos B , Memoria Inmunológica , Recurrencia Local de Neoplasia/metabolismo , Receptores Quiméricos de Antígenos/metabolismo
16.
Clin Cancer Res ; 30(10): 2085-2096, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38466644

RESUMEN

PURPOSE: B-cell maturation antigen (BCMA)-chimeric antigen receptor T-cells (CART) improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. PATIENTS AND METHODS: We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next-generation flow cytometry, and correlated these to clinical outcomes. RESULTS: At cut-off date March 17, 2023, with a median follow-up of 23.1 months (95% CI, 9.2-37.1), overall response rate in the first 3 months was 95% [95% confidence interval (CI), 89.5-100]; cytokine release syndrome (CRS) was observed in 90% of patients (5% grades ≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95% CI, 11.5-22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. CONCLUSIONS: Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/tratamiento farmacológico , Antígeno de Maduración de Linfocitos B/inmunología , Antígeno de Maduración de Linfocitos B/antagonistas & inhibidores , Masculino , Femenino , Persona de Mediana Edad , Anciano , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Adulto , Biomarcadores de Tumor , Receptores Quiméricos de Antígenos/inmunología , Resultado del Tratamiento
17.
Cancers (Basel) ; 14(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35954459

RESUMEN

Tumors are composed of a plethora of extracellular matrix, tumor and non-tumor cells that form a tumor microenvironment (TME) that nurtures the tumor cells and creates a favorable environment where tumor cells grow and proliferate. In multiple myeloma (MM), the TME is the bone marrow (BM). Non-tumor cells can belong either to the non-hematological compartment that secretes soluble mediators to create a favorable environment for MM cells to grow, or to the immune cell compartment that perform an anti-MM activity in healthy conditions. Indeed, marrow-infiltrating lymphocytes (MILs) are associated with a good prognosis in MM patients and have served as the basis for developing different immunotherapy strategies. However, MM cells and other cells in the BM can polarize their phenotype and activity, creating an immunosuppressive environment where immune cells do not perform their cytotoxic activity properly, promoting tumor progression. Understanding cell-cell interactions in the BM and their impact on MM proliferation and the performance of tumor surveillance will help in designing efficient anti-MM therapies. Here, we take a journey through the BM, describing the interactions of MM cells with cells of the non-hematological and hematological compartment to highlight their impact on MM progression and the development of novel MM treatments.

18.
Sci Adv ; 8(39): eabo0514, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36179026

RESUMEN

Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response.

19.
Haematologica ; 96(1): 102-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20851866

RESUMEN

UNLABELLED: Background The number of CD34(+) cells mobilized from bone marrow to peripheral blood after administration of granulocyte colony-stimulating factor varies greatly among healthy donors. This fact might be explained, at least in part, by constitutional differences in genes involved in the interactions tethering CD34(+) cells to the bone marrow. DESIGN AND METHODS: We analyzed genetic characteristics associated with CD34(+) cell mobilization in 112 healthy individuals receiving granulocyte colony-stimulating factor (filgrastim; 10 µg/kg; 5 days). RESULTS: Genetic variants in VCAM1 and in CD44 were associated with the number of CD34(+) cells in peripheral blood after granulocyte colony-stimulating factor administration (P = 0.02 and P = 0.04, respectively), with the quantity of CD34(+) cells ×106/kg of donor (4.6 versus 6.3; P < 0.001 and 7 versus 5.6; P = 0.025, respectively), and with total CD34(+) cells ×106 (355 versus 495; P = 0.002 and 522 versus 422; P = 0.012, respectively) in the first apheresis. Of note, granulocyte colony-stimulating factor administration was associated with complete disappearance of VCAM1 mRNA expression in peripheral blood. Moreover, genetic variants in granulocyte colony-stimulating factor receptor (CSF3R) and in CXCL12 were associated with a lower and higher number of granulocyte colony-stimulating factor-mobilized CD34(+) cells/µL in peripheral blood (81 versus 106; P = 0.002 and 165 versus 98; P=0.02, respectively) and a genetic variant in CXCR4 was associated with a lower quantity of CD34(+) cells ×106/kg of donor and total CD34(+) cells ×106 (5.3 versus 6.7; P = 0.02 and 399 versus 533; P = 0.01, respectively). Conclusions In conclusion, genetic variability in molecules involved in migration and homing of CD34(+) cells influences the degree of mobilization of these cells.


Asunto(s)
Antígenos CD34/genética , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Movilización de Célula Madre Hematopoyética , Receptores de Hialuranos/genética , Polimorfismo de Nucleótido Simple/genética , Molécula 1 de Adhesión Celular Vascular/genética , Células Cultivadas , Quimiocina CXCL12/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , ARN Mensajero/genética , Receptores del Factor Estimulante de Colonias/genética , Proteínas Recombinantes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Donantes de Tejidos
20.
Cells ; 10(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685542

RESUMEN

Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.


Asunto(s)
Inmunidad/inmunología , Inflamación/inmunología , Neoplasias/prevención & control , Neoplasias/terapia , Anciano , Humanos , Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA