RESUMEN
Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1-/- ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking ß1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating ß1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c+ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3+ regulatory T cells (Tregs), and increased number of CD8+ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8+ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
Asunto(s)
Enfermedades Autoinmunes/patología , Galectina 1/fisiología , Tolerancia Inmunológica/inmunología , Glándulas Salivales/patología , Sialadenitis/patología , Síndrome de Sjögren/patología , Linfocitos T Reguladores/inmunología , Adulto , Factores de Edad , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Estudios de Casos y Controles , Células Dendríticas/inmunología , Femenino , Glicosilación , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Persona de Mediana Edad , N-Acetilglucosaminiltransferasas/fisiología , Polisacáridos/metabolismo , Glándulas Salivales/inmunología , Glándulas Salivales/metabolismo , Sialadenitis/inmunología , Sialadenitis/metabolismo , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismoRESUMEN
Type-2 diabetes mellitus (T2DM) is an expanding global health problem, involving defective insulin secretion by pancreatic ß-cells and peripheral insulin resistance, leading to impaired glucose regulation. Galectin-1-an endogenous lectin with affinity for N-acetyllactosamine (LacNAc)-containing glycans-has emerged as a regulator of inflammatory and metabolic disorders. However, the role of galectin-1 in glucose homeostasis and pancreatic ß-cell function, independently of hypercaloric diets, has not been explored. Here, we identified a phenotype compatible with T2DM, involving alterations in glucose metabolism and pancreatic insulin release, in female but not male mice lacking galectin-1 (Lgals1-/-). Compared with age-matched controls, Lgals1-/- female mice exhibited higher body weight and increased food intake ad libitum as well as after fasting and acute re-feeding. Although fasted serum insulin levels and insulin sensitivity were similar in both genotypes, Lgals1-/- female mice presented altered glucose tolerance and higher basal glucose levels depending on the fasting period. Insulin response to glucose overload was impaired, while pancreatic insulin content was enhanced in the absence of galectin-1. Accordingly, recombinant galectin-1 enhanced glucose-stimulated insulin release in vitro. Our study identifies a role for galectin-1 in regulating glucose metabolism through modulation of pancreatic insulin secretion, highlighting novel opportunities to control T2DM.
Asunto(s)
Resistencia a la Insulina , Insulina , Animales , Femenino , Galectina 1/genética , Galectina 1/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Secreción de Insulina , Masculino , RatonesRESUMEN
Type 1 diabetes occurs as a consequence of progressive autoimmune destruction of beta cells. A potential treatment for this disease should address the immune attack on beta cells and their preservation/regeneration. The objective of this study was to elucidate whether the immunomodulatory synthetic oligonucleotide IMT504 was able to ameliorate diabetes in NOD mice and to provide further understanding of its mechanism of action. We found that IMT504 restores glucose homeostasis in a diabetes mouse model similar to human type 1 diabetes, by regulating expression of immune modulatory factors and improving beta cell function. IMT504 treatment markedly improved fasting glycemia, insulinemia, and homeostatic model assessment of beta cell function (HOMA-Beta cell) index. Moreover, this treatment increased islet number and decreased apoptosis, insulitis, and CD45+ pancreas-infiltrating leukocytes. In a long-term treatment, we observed improvement of glucose metabolism up to 9 days after IMT504 cessation and increased survival after 15 days of the last IMT504 injection. We postulate that interleukin (IL)-12B (p40), possibly acting as a homodimer, and Galectin-3 (Gal-3) may function as mediators of this immunomodulatory action. Overall, these results validate the therapeutic activity of IMT504 as a promising drug for type 1 diabetes and suggest possible downstream mediators of its immunomodulatory effect.
Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Insulina/genética , Oligodesoxirribonucleótidos/farmacología , Oligonucleótidos/farmacología , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Ratones , Ratones Endogámicos NOD , Oligodesoxirribonucleótidos/genética , Oligonucleótidos/genética , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patologíaRESUMEN
Although progress has been made in understanding the mechanisms implicated in the pathogenesis of autoimmune inflammation, studies aimed at identifying the mediators of these pathways will be necessary to develop more selective therapies. Galectins, a family of glycan-binding proteins, play central roles in immune cell homeostasis. Whereas some members of this family trigger regulatory programs that promote resolution of inflammation, others contribute to perpetuate autoimmune processes. We discuss the roles of endogenous galectins and their specific glycosylated ligands in shaping autoimmune responses by fueling, extinguishing, or rewiring immune circuits. Understanding the relevance of galectin-glycan interactions in autoimmune inflammation could help to uncover novel pathways of tolerance breakdown, define molecular signatures for patient stratification and therapy responses, and open new avenues for immune intervention.
Asunto(s)
Enfermedades Autoinmunes/metabolismo , Galectinas/metabolismo , Inflamación/metabolismo , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Autoinmunidad/efectos de los fármacos , Factores Biológicos/farmacología , Factores Biológicos/uso terapéutico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Humanos , Inflamación/tratamiento farmacológicoRESUMEN
Galectin-1 (Gal1), an evolutionarily conserved glycan-binding protein, contributes to the creation of an immunosuppressed microenvironment at sites of tumor growth. In spite of considerable progress in elucidating its role in tumor-immune escape, the mechanisms underlying the inhibitory functions of Gal1 remain obscure. Here, we investigated the contribution of tumor Gal1 to tumor growth, metastasis, and immunosuppression in breast cancer. We found that the frequency of Gal1(+) cells in human breast cancer biopsies correlated positively with tumor grade, while specimens from patients with benign hyperplasia showed negative or limited Gal1 staining. To examine the pathophysiologic relevance of Gal1 in breast cancer, we used the metastatic mouse mammary tumor 4T1, which expresses and secretes substantial amounts of Gal1. Silencing Gal1 expression in this model induced a marked reduction in both tumor growth and the number of lung metastases. This effect was abrogated when mice were inoculated with wild-type 4T1 tumor cells in their contralateral flank, suggesting involvement of a systemic modulation of the immune response. Gal1 attenuation in 4T1 cells also reduced the frequency of CD4(+)CD25(+) Foxp3(+) regulatory T (T(reg)) cells within the tumor, draining lymph nodes, spleen, and lung metastases. Further, it abrogated the immunosuppressive function of T(reg) cells and selectively lowered the expression of the T-cell regulatory molecule LAT (linker for activation of T cells) on these cells, disarming their suppressive activity. Taken together, our results offer a preclinical proof of concept that therapeutic targeting of Gal1 can overcome breast cancer-associated immunosuppression and can prevent metastatic disease.